博碩士論文 110356005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.133.153.232
姓名 彭盛賓(Sheng-Bin Peng)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 鍋爐混燒固體再生燃料(SRF)之空氣污染物排放特性分析
(Characteristics of Air Pollutants Emitted from Boilers Cofiring Solid Recovered Fuel)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 近年替代石化燃料市場正增長,將無法處理再利用廢棄物分類,而部 分廢棄物可當作燃料,利用廢棄物資源化,達成物質循順利用效益,降 低對石化燃料依賴。燃燒石化燃料所排放溫室氣體也是嚴重問題,特別 是二氧化碳,故如何有效減少溫室氣體排放也是一個重要問題。研究探 討 A 廠流體化床鍋爐使用固體再生燃料及廢橡膠混燒,B 廠鏈排床式 鍋爐生煤與固體再生燃料混燒,檢測煙道中二氧化碳、粒狀物、硫氧化 物、氮氧化物及戴奧辛排放濃度,並計算排放量與排放係數。結果顯示 A 廠單位排放係數,二氧化碳 275kg/噸水蒸氣、粒狀物 7.81 g/噸水蒸 氣、硫氧化物 28.64 g/噸水蒸氣、氮氧化物 51.27 g/噸水蒸氣、戴奧辛 55.64 ng-TEQ/水蒸氣噸。B 廠排放係數二氧化碳 292 kg/噸水蒸氣、粒 狀物 5.62 g/噸水蒸氣、硫氧化物 21.39 g/噸水蒸氣、氮氧化物 104.65 g/ 噸水蒸氣、戴奧辛 4.50 ng-TEQ/水蒸氣噸。戴奧辛排放係數 A 廠高於 B 廠 12.4 倍。B 廠加入 5%固體再生燃料,二氧化碳排放係數降低至 248 kg/噸水蒸氣。雖使用固體再生燃料能有效減少二氧化碳排放,但須 注意戴奧辛控制。
摘要(英) In recent years, the market of alternative fuel to replace fossil fuel is growing rapidly. However, it is not easy to classify the recycling waste and control its quality. Some wastes can be used as fuel for achieving waste recycling, reducing the relying on fossil fuel and carbon dioxide emissions. This study investigates the air pollutants emitted from the co- firing process of solid recovered fuel (SRF) and waste rubber in the fluidized-bed boiler of plant A and the co-combustion process of raw coal and solid recovered fuel in the chain bed boiler of plant B. Concentrations of carbon dioxide, particulate matter, sulfur oxides, nitrogen oxides and dioxin in the flue gas emitted are measured to calculate the emission factors. The results show that the emission factor of carbon dioxide is 275 kg/ton of steam, particulate matter is 7.81 g/ton of steam, sulfur oxide is 28.64 g/ton of steam, nitrogen oxide is 51.27 g/ton of steam, and dioxin is 55.644 ng-TEQ/ton of steam. The emission factors measured for plant B are carbon dioxide: 292 g/ton of steam, particulate matter: 5.62 g/ton of steam, sulfur oxide: 21.39 g/ton of steam, nitrogen oxide: 104.65 g/ton of steam, and PCDD/F: 4.50 ng-TEQ/ton of steam. The emission factor of dioxin in plant A is 12.4 times higher than that of plant B. As 5% solid recovered fuel is added to plant B, the carbon dioxide emission factor is reduced to 248 kg/ton of steam. Although applying the solid recovered fuel can effectively reduce carbon dioxide emission, the PCDD/F emission should be well controlled.
關鍵字(中) ★ 固體再生燃料
★ 鍋爐
★ 空氣污染物
★ 排放係數
關鍵字(英) ★ solid recovered fuel
★ boiler
★ air pollutants
★ emission factor
論文目次 中文摘要 ................................................................................................ I
ABSTRACT ........................................................................................... II
誌謝...................................................................................................... III
目錄...................................................................................................... IV
圖目錄....................................................................................................VI
表目錄................................................................................................. VIII
第一章 前言..........................................................................................1
1.1 研究緣起 ......................................................................................1
1.2 研究目的 .....................................................................................4
第二章 文獻回顧...................................................................................5
2.1 鍋爐系統 .......................................................................................5
2.1.1 汽電共生鍋爐 ............................................................................6
2.1.2 流體化床鍋爐 ............................................................................7
2.1.3 鏈排床式鍋爐 ............................................................................8
2.2 鍋爐燃料 .......................................................................................9
2.3 替代燃料........................................................................................11
2.3.1 替代燃料種類 ...........................................................................11
2.3.2 固態性衍生燃料(SRF)...............................................................12
2.4 工業鍋爐燃料單位成本 ..................................................................15
2.5 不同發電方式之溫室氣體排放量 .....................................................16
2.6 空氣污染物定義與影響 ..................................................................18
2.6.1 常見之空氣污染物 ...................................................................19
2.7 空氣污染物控制技術 .....................................................................21
2.7.1 粒狀污染物控制技術 ...............................................................22
2.7.2 硫氧化物生成與控制制技術 ....................................................34
2.7.3 氮氧化物生成與控制技術 .......................................................36
2.7.4 戴奧辛生成與控制技術 ...........................................................41
第三章 研究方法.................................................................................47
3.1 研究架構 ....................................................................................47
3.2 執行方式 ....................................................................................47
3.3 研究對象基本資料 .......................................................................51
第四章 結果與討論...............................................................................53
4.1 A 廠粒狀排放濃度與脈動式袋式集塵器操作參數 .................... 54
4.2 A 廠硫氧化物排放濃度與濕式排煙脫硫之操作參數 ................ 55
4.3 A 廠氮氧化物排放濃度與選擇性觸媒還原設備之操作參數 .......57
4.4 A 廠戴奧辛排放濃度與防制設備操作參數 ...............................59
4.5 A 廠二氧化碳排放濃度 ..........................................................61
4.6 B 廠粒狀排放濃度與靜電集塵器操作參數 ...............................62
4.7 B 廠硫氧化物排放濃度與濕式排煙脫硫之操作參數 ..................64
4.8 B 廠氮氧化物排放濃度與選擇性觸媒還原設備之操作參數 ........67
4.9 B 廠戴奧辛排放濃度與防制設備操作參數 ................................68
4.10 B 廠二氧化碳排放濃度 ..........................................................70
4.11 兩廠污染物排放係數 ..............................................................71
4.12 兩廠排放係數比較 .................................................................77
第五章 結論與建議.............................................................................79
5-1 結論........................................................................................79
5-2 建議........................................................................................80
參考文獻 ..........................................................................................82
參考文獻 Airknowledge, (https://airknowledge.gov/ILTpages/TOXC241.html), 2023.
BMH technology, “Wase refining solutions”, 2019.
Beachler, D., Joseph , J., Pompelia, M., “Fabric filter operation review”, Environmental programs., United States, 2016.
Beachler, D., Joseph , J., Pompelia, “Electrostatic precipitator operation”, Environmental Programs., United States, 2016.
Bernstein, L., Bosch, P., Canziani, O., Chen, Z., “Climate change synthesis report”. 2007.
Babcock wilcox, (https://www.babcock.com/home/products/electrostatic-precipitators-dry-esp/), 2023.
Chang, M. B., Chi, K, H., Chang, S, H., Yeh, J, W., “Destruction of PCDD/Fs by SCR from flue gases of municipal waste incinerator and metal smelting plant”, Chemosphere, vol. 66, 2007, pp. 1114-1122
Chen, C., “The emission inventory of PCDD/PCDF in taiwan”, Chemosphere, vol. 54, 2004, pp. 1413-1420.
Chi, K, H., Chang, M, B., Chang, G, P., Lin, C., “Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan”, Science of the Total Environment, vol. 347, 2005, pp. 148-162.
Duan, F., Liu, J., Cyang, C., Hu, C., Tso, J., “Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor”, Energy, vol. 57, 2013, pp. 421-426.
Hung, P.C., Chang, S.H., Lin, S.H., Buekens, A., Chang, M.B., “Pilot Tests on the Catalytic Filtration of Dioxins”, Environmental Science & Technology, Vol. 48, 2014, pp. 3995-4001.
Kanojiya, M., Mandavgade, N., Kalbande, V., Padole, C., “Design and fabrication of cyclone dust collector for industrial application”, Materials Today Proceedings, vol. 49, 2022, pp. 378-382.
Li, C., Huangfu, L., Li, J., Gao, S., Xu, G., Yu, J., “Recent advances in catalytic filters for integrated removal of dust and NOX from flue gas: fundamentals and applications”, Resources Chemicals and Materials, vol. 1, 2022,pp. 275-289.
Lemieux, P.M., Lee, C.W., Ryan, J.V., Lutes, C.C., “Bench-scale studieson the simultaneous formation of PCBs and PCDD/Fs from combustion systems”, Waste Management, vol. 21, 2001, pp. 419-425.
Lim, S. K., Jang, K. W., Hong, J. H., jung, Y. W., Kim, H. C., “Estimated CO2 emissions and analysis of solid recovered fuel (SRF) as an alternative fuel”, Atmospheric Environment, vol. 7-1, 2013, pp. 48-55.
Liu, X., Tana, H., Fuxin, Y., Mikul, H., Vujanovic, M., Duic, N., “Low NOX combustion and SCR flow field optimization in a low volatile coal fired boiler”, Journal of Environmental Management, vol. 220, 2018, pp. 30-35.
Liljelind P, Unsworth J, Maaskant O, Marklund S., “Removal of PCDD/Fs and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction”, Chemosphere, vol. 42, 2001, pp. 615-23.
Ma, L., Fang, Q., Yin, C., Wang, H., Zhang, C.,Chen, G., “A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOX emissions”, Applied Energy, vol. 238, 2019, pp. 453-465.
Mohan Krishna, S., Krishnamurthy, N., “Emerging Post Combustion Technologies for coal fired thermal power plants”. Power Research, vol. 14, 2018, pp. 185-190.
NEA (Nuclear energy agency), “The Role of Nuclear Energy in a Low-carbon Energy Future”, 2012,pp 22.
Olie, K., Addink, R., Schoonenboom, M. “Metals as catalysts during the formation and decomposition of chlorinated dioxins and furans in incineration processes”. Journal of the Air & Waste Management Association, vol. 48, 1998, pp 101-105.
Richards, J., “Control of nitrogen oxides emissions”, Air Pollution Training Institute., United States, 2000.
Savree, (https://savree.com/en/encyclopedia/electrostatic-precipitator-esp), 2023.
Selvam, M., Vigneshwaran, R., Irudhayaraj, R., Palani, S., Parthasarathy, V., “Emission control diesel power plant for reducing oxides of nitrogen through selective catalytic reduction method using ammonia”, Indian Journal of Science and Technology, vol. 9, 2016.
Srivastava, R., “Controlling SO2 emissions a review of technologies”, U.S. Environmental Protection Agency., National Risk Management Research Laboratory Research Triangle Park, 2000.
Schenelle, Jr., Karl, B., Brown, P. E., “Air pollution control technology handbook”, CRC Press, Boca Raton, FL. 2002.
Wang, C. L., Lee, W. J., Tsai, P. J., Lee, W. S., Chien, G. P., “Emissions of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans from Stack Flue Gases of Sinter Plants”, Chemosphere, vol. 50, 2003, pp. 1123–1129.
Wang, S., Chen, B., “Accounting of SO2 emissions from combustion in industrial boilers”. Energy Procedia, vol. 88, 2016, pp. 325-329.
Wang, J. B., Hung, C. H., Hung, C. H., Chang-Chien, G. P. “ Polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from an industrial park clustered with metallurgical industries”, Journal of Hazardous Materials, vol. 161, 2009, pp. 800-807.
WNA (World Nuclear Association), “Comparison of lifecycle greenhouse gas emissions of various electricity generation sources”, 2011, pp. 6.
Xie, B., Lia, L., Jin, H., Hu, S., Wang, F., Zhou., F. “Analysis of the performance of a novel dust collector combining cyclone separator and cartridge filter”, Powder Technology, vol. 339, 2018, pp. 695-701.
工業技術研究院,「能源查核與節約能源案例手冊-鍋爐系統」,2005。
王秋森,周邊空氣中細懸浮微粒的來源,環保資訊月刊第 206 期,2015。
中技社節能技術發展中心,蒸氣鍋爐高效率作業技術手冊,台北,2000。
能源局,「能源產品單位熱值表(僅供能源統計用)」,能源局,2018。
徐偉恩,「熱熱處理程序之戴奥辛排放特性探討」,碩士論文,國立中央大學環境工程研究所,2020。
張家驥,「桃園市燃煤汽電共生鍋爐使用替代燃料評估」,台灣生質能技術發展協會,2021。
張家驥,「燃煤鍋爐使用固體替代燃料案例與效益」,台灣生質能技術發展協會,2022。
張木彬、張君正,「氮氧化物生成機制與控制技術」,工業污染防制,第13卷,第2期,1994。
經濟部,「高效率節能產品或低碳技術」,電子報,經濟部工業局,2019。
經濟部,「111年工業鍋爐低污減碳改善技術研討會」,工業局,2022
蔡孟原,「循環式流體化床鍋爐」,科學發展,2010。
鄭宇智,「濕式靜電集塵器效率特性之研究」,碩士論文,台北科技大學環境工程與管理研究所,2014。
環境保護人員訓練所,「空氣污染防制概論」,環保署,2021。
環境保護人員訓練所,「粒狀污染物控制技術」,環保署,2021。
環保署,「公私場所固定污染源申報空氣污染防制費之硫氧化物及氮氧化物排放係數及控制效率規定」,環保署,2014。
環保署,「公私場所固定污染源申報空氣污染防制費之粒狀污染物、鉛、鎘、汞、砷、六價鉻、戴奧辛排放係數、控制效率及其他計量規定」,環保署,2018。
環保署,「空氣污染排放清冊」,環保署,2022。
指導教授 張木彬(Mu-Pin Chang) 審核日期 2023-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明