參考文獻 |
Adamson, N. J., & Reynolds, E. C. (1996). Characterization of casein phosphopeptides prepared using alcalase: Determination of enzyme specificity. Enzyme and microbial technology, 19(3), 202-207.
Ando, S., Ishikawa, K., Ishida, H., Kawarabayasi, Y., Kikuchi, H., & Kosugi, Y. (1999). Thermostable aminopeptidase from Pyrococcus horikoshii. FEBS letters, 447(1), 25-28.
Appolaire, A., Durá, M. A., Ferruit, M., Andrieu, J. P., Godfroy, A., Gribaldo, S., & Franzetti, B. (2014). The TET2 and TET3 aminopeptidases from P yrococcus horikoshii form a hetero‐subunit peptidasome with enhanced peptide destruction properties. Molecular Microbiology, 94(4), 803-814.
Appolaire, A., Rosenbaum, E., Durá, M. A., Colombo, M., Marty, V., Savoye, M. N., Godfroy, A., Schoehn, G., Girard, E., & Gabel, F. (2013). Pyrococcus horikoshii TET2 peptidase assembling process and associated functional regulation. Journal of Biological Chemistry, 288(31), 22542-22554.
Ariaeenejad, S., Kavousi, K., Mamaghani, A. S. A., Ghasemitabesh, R., & Salekdeh, G. H. (2022). Simultaneous hydrolysis of various protein-rich industrial wastes by a naturally evolved protease from tannery wastewater microbiota. Science of the Total Environment, 815, 152796.
Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., & Mori, H. (2006). Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular systems biology, 2(1), 2006.0008.
Bachosz, K., Zdarta, J., Bilal, M., Meyer, A. S., & Jesionowski, T. (2023). Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment. Science of the Total Environment, 161630.
Baldi, G., Soglia, F., & Petracci, M. (2021). Valorization of meat by-products. In Food waste recovery (pp. 419-443). Elsevier.
Bhaskar, N., Modi, V. K., Govindaraju, K., Radha, C., & Lalitha, R. G. (2007). Utilization of meat industry by products: protein hydrolysate from sheep visceral mass. Bioresource technology, 98(2), 388-394.
Chabeaud, A., Dutournié, P., Guérard, F., Vandanjon, L., & Bourseau, P. (2009). Application of response surface methodology to optimise the antioxidant activity of a saithe (Pollachius virens) hydrolysate. Marine Biotechnology, 11, 445-455.
Chen, Y., Zhang, R., Zhang, W., & Xu, Y. (2022). Alanine aminopeptidase from Bacillus licheniformis E7 expressed in Bacillus subtilis efficiently hydrolyzes
55
soy protein to small peptides and free amino acids. LWT, 165, 113642.
Clare, D., & Swaisgood, H. (2000). Bioactive milk peptides: a prospectus. Journal of dairy science, 83(6), 1187-1195.
Claver, I. P., & Zhou, H. (2005). Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates. Journal of food biochemistry, 29(1), 13-26.
De Benedetti, S., Girlando, V., Pasquali, M., & Scarafoni, A. (2021). Valorization of Okara by Enzymatic Production of Anti-Fungal Compounds for Plant Protection. Molecules, 26(16), 4858.
DeLange, R. J., & Smith, E. L. (1968). Subtilisin carlsberg: I. Amino acid composition; isolation and composition of peptides from the tryptic hydrolysate. Journal of Biological Chemistry, 243(9), 2134-2142.
Durá, M. A., Receveur-Brechot, V., Andrieu, J.-P., Ebel, C., Schoehn, G., Roussel, A., & Franzetti, B. (2005). Characterization of a TET-like aminopeptidase complex from the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemistry, 44(9), 3477-3486.
Durá, M. A., Rosenbaum, E., Larabi, A., Gabel, F., Vellieux, F. M., & Franzetti, B. (2009). The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic Archaea. Molecular Microbiology, 72(1), 26-40.
Fayaz, G., Plazzotta, S., Calligaris, S., Manzocco, L., & Nicoli, M. C. (2019). Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT, 113, 108324.
Feng, J.-Y., Wang, R., Thakur, K., Ni, Z.-J., Zhu, Y.-Y., Hu, F., Zhang, J.-G., & Wei, Z.-J. (2021). Evolution of okara from waste to value added food ingredient: An account of its bio-valorization for improved nutritional and functional effects. Trends in Food Science & Technology, 116, 669-680.
Fountoulakis, M., & Lahm, H.-W. (1998). Hydrolysis and amino acid composition analysis of proteins. Journal of chromatography A, 826(2), 109-134.
Frank, M. P., & Powers, R. W. (2007). Simple and rapid quantitative high-performance liquid chromatographic analysis of plasma amino acids. Journal of chromatography B, 852(1-2), 646-649.
Franzetti, B., Schoehn, G., Hernandez, J.-F., Jaquinod, M., Ruigrok, R., & Zaccai, G. (2002). Tetrahedral aminopeptidase: a novel large protease complex from archaea. The EMBO journal, 21(9), 2132-2138.
Gao, M.-T., Hirata, M., Toorisaka, E., & Hano, T. (2006). Acid-hydrolysis of fish wastes for lactic acid fermentation. Bioresource technology, 97(18), 2414-
56
2420.
Gicana, R. G., Yeh, F.-I., Hsiao, T.-H., Chiang, Y.-R., Yan, J.-S., & Wang, P.-H. (2022). Valorization of fish waste and sugarcane bagasse for Alcalase production by Bacillus megaterium via a circular bioeconomy model. Journal of the Taiwan Institute of Chemical Engineers, 135, 104358.
Gonzales, T., & Robert-Baudouy, J. (1996). Bacterial aminopeptidases: properties and functions. FEMS microbiology reviews, 18(4), 319-344.
Guido, Y. d. A. S., Fonseca, G., de Farias Soares, A., da Silva, E. C. N., Ostanik, P. A. G., & Perobelli, J. E. (2020). Food-triad: An index for sustainable consumption. Science of the Total Environment, 740, 140027.
Guo, L., Lu, L., Yin, M., Yang, R., Zhang, Z., & Zhao, W. (2020). Valorization of refractory keratinous waste using a new and sustainable bio-catalysis. Chemical Engineering Journal, 397, 125420.
Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied microbiology and biotechnology, 59, 15-32.
Hu, Y., Piao, C., Chen, Y., Zhou, Y., Wang, D., Yu, H., & Xu, B. (2019). Soybean residue (okara) fermentation with the yeast Kluyveromyces marxianus. Food Bioscience, 31, 100439.
Huang, E., Yan, J.-S., Gicana, R. G., Chiang, Y.-R., Yeh, F.-I., Huang, C.-C., & Wang, P.-H. (2023). Valorization of soybean pulp for sustainable α-ketoisocaproate production using engineered Bacillus subtilis whole-cell biocatalyst. Chemosphere, 322, 138200.
Kamble, D. B., & Rani, S. (2020). Bioactive components, in vitro digestibility, microstructure and application of soybean residue (okara): A review. Legume Science, 2(1), e32.
Korneli, C., David, F., Biedendieck, R., Jahn, D., & Wittmann, C. (2013). Getting the big beast to work—systems biotechnology of Bacillus megaterium for novel high-value proteins. Journal of biotechnology, 163(2), 87-96.
Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), 43-81.
Lai, Y., Li, W., Wu, X., & Wang, L. (2021). A highly efficient protein degradation system in Bacillus sp. CN2: a functional-degradomics study. Applied microbiology and biotechnology, 105, 707-723.
Lee, J.-Y., Lee, H. D., & Lee, C.-H. (2001). Characterization of hydrolysates produced by mild-acid treatment and enzymatic hydrolysis of defatted soybean flour. Food Research International, 34(2-3), 217-222.
57
Lei, F., Zhao, Q., Lin, L., Sun, B., & Zhao, M. (2017). Evaluation of the hydrolysis specificity of an aminopeptidase from Bacillus licheniformis SWJS33 using synthetic peptides and soybean protein isolate. Journal of agricultural and food chemistry, 65(1), 167-173.
Lei, F., Zhao, Q., Sun-Waterhouse, D., & Zhao, M. (2017). Characterization of a salt-tolerant aminopeptidase from marine Bacillus licheniformis SWJS33 that improves hydrolysis and debittering efficiency for soy protein isolate. Food chemistry, 214, 347-353.
Li, B., Qiao, M., & Lu, F. (2012). Composition, nutrition, and utilization of okara (soybean residue). Food Reviews International, 28(3), 231-252.
Li, B., Yang, W., Nie, Y., Kang, F., Goff, H. D., & Cui, S. W. (2019). Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 94, 48-56.
Li, H., Long, D., Peng, J., Ming, J., & Zhao, G. (2012). A novel in-situ enhanced blasting extrusion technique—Extrudate analysis and optimization of processing conditions with okara. Innovative Food Science & Emerging Technologies, 16, 80-88.
Lin, F., Chhapekar, S. S., Vieira, C. C., Da Silva, M. P., Rojas, A., Lee, D., Liu, N., Pardo, E. M., Lee, Y.-C., & Dong, Z. (2022). Breeding for disease resistance in soybean: a global perspective. Theoretical and Applied Genetics, 1-100.
Lu, F., Liu, Y., & Li, B. (2013). Okara dietary fiber and hypoglycemic effect of okara foods. Bioactive Carbohydrates and Dietary Fibre, 2(2), 126-132.
Luján, R., & Ciruela, F. (2021). Receptor and Ion Channel Detection in the Brain. Springer.
Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suárez, M.-J., Zapata-Revilla, M.-A., & Tenorio-Sanz, M.-D. (2010). Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT-Food Science and Technology, 43(9), 1467-1470.
Montilha, M., Sbroggio, M., Figueiredo, V., Ida, E., & Kurozawa, L. (2017). Optimization of enzymatic protein hydrolysis conditions of okara with endopeptidase Alcalase. International Food Research Journal, 24(3), 1067.
Nandan, A., & Nampoothiri, K. M. (2020). Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Applied microbiology and biotechnology, 104, 5243-5257.
Nielsen, P., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of food science, 66(5), 642-646.
O′Toole, D. K. (1999). Characteristics and use of okara, the soybean residue from soy milk production a review. Journal of agricultural and food chemistry, 47(2),
58
363-371.
Orts, A., Revilla, E., Rodriguez-Morgado, B., Castaño, A., Tejada, M., Parrado, J., & García-Quintanilla, A. (2019). Protease technology for obtaining a soy pulp extract enriched in bioactive compounds: isoflavones and peptides. Heliyon, 5(6), e01958.
Pang, B., Sun, Z., Wang, L., Chen, W.-J., Sun, Q., Cao, X.-F., Shen, X.-J., Xiao, L., Yan, J.-L., & Deuss, P. J. (2021). Improved value and carbon footprint by complete utilization of corncob lignocellulose. Chemical Engineering Journal, 419, 129565.
Pasupuleti, V. K., & Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Protein hydrolysates in biotechnology, 11-32.
Patel, A. K., Singhania, R. R., & Pandey, A. (2016). Novel enzymatic processes applied to the food industry. Current Opinion in Food Science, 7, 64-72.
Peydayesh, M., Bagnani, M., Soon, W. L., & Mezzenga, R. (2022). Turning food protein waste into Sustainable Technologies. Chemical Reviews.
Phadtare, S., Rao, M., & Deshpande, V. (1996). A serine alkaline protease from the fungus Conidiobolus coronatus with a distinctly different structure than the serine protease subtilisin Carlsberg. Archives of microbiology, 166, 414-417.
Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75, 93-104.
Provansal, M. M., Cuq, J. L., & Cheftel, J. C. (1975). Chemical and nutritional modifications of sunflower proteins due to alkaline processing. Formation of amino acid crosslinks and isomerization of lysine residues. Journal of agricultural and food chemistry, 23(5), 938-943.
Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and molecular biology reviews, 62(3), 597-635.
Rawlings, N. D. (2016). Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation. Biochimie, 122, 5-30.
Rovera, C., Fiori, F., Trabattoni, S., Romano, D., & Farris, S. (2020). Enzymatic hydrolysis of bacterial cellulose for the production of nanocrystals for the food packaging industry. Nanomaterials, 10(4), 735.
Rovera, C., Ghaani, M., Santo, N., Trabattoni, S., Olsson, R. T., Romano, D., & Farris, S. (2018). Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustainable Chemistry & Engineering, 6(6), 7725-7734.
59
Russell, D. W., & Sambrook, J. (2001). Molecular cloning: a laboratory manual (Vol. 1). Cold Spring Harbor Laboratory Cold Spring Harbor, NY.
Rygus, T., & Hillen, W. (1991). Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Applied microbiology and biotechnology, 35, 594-599.
Sigma-Aldrich.
Sim, S. Y. J., Srv, A., Chiang, J. H., & Henry, C. J. (2021). Plant proteins for future foods: A roadmap. Foods, 10(8), 1967.
Song, Y., Lee, B.-R., Cho, S., Cho, Y.-B., Kim, S.-W., Kang, T. J., Kim, S. C., & Cho, B.-K. (2015). Determination of single nucleotide variants in Escherichia coli DH5α by using short-read sequencing. FEMS Microbiology Letters, 362(11), fnv073.
Souza, T. S. P. d., de Andrade, C. J., Koblitz, M. G. B., & Fai, A. E. C. (2023). Microbial peptidase in food processing: Current state of the art and future trends. Catalysis Letters, 153(1), 114-137.
Stammen, S., Müller, B. K., Korneli, C., Biedendieck, R., Gamer, M., Franco-Lara, E., & Jahn, D. (2010). High-yield intra-and extracellular protein production using Bacillus megaterium. Applied and Environmental Microbiology, 76(12), 4037-4046.
Stammen, S., Schuller, F., Dietrich, S., Gamer, M., Biedendieck, R., & Jahn, D. (2010). Application of Escherichia coli phage K1E DNA-dependent RNA polymerase for in vitro RNA synthesis and in vivo protein production in Bacillus megaterium. Applied microbiology and biotechnology, 88, 529-539.
Tacias-Pascacio, V. G., Morellon-Sterling, R., Siar, E.-H., Tavano, O., Berenguer-Murcia, A., & Fernandez-Lafuente, R. (2020). Use of Alcalase in the production of bioactive peptides: A review. International journal of biological macromolecules, 165, 2143-2196.
Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1-11.
Tsai, W.-T., & Kuo, K.-C. (2010). An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy, 35(12), 4824-4830.
TSUGITA, A., & SCHEFFLER, J. J. (1982). A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. European journal of biochemistry, 124(3), 585-588.
Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology, 108, 27-39.
UN. (2015). Sustainable Development Goals.
Vary, P. S. (1994). Prime time for Bacillus megaterium. Microbiology, 140(5), 1001-
60
1013.
Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W.-D., & Jahn, D. (2007). Bacillus megaterium—from simple soil bacterium to industrial protein production host. Applied microbiology and biotechnology, 76, 957-967.
Xiong, X., Iris, K., Tsang, D. C., Bolan, N. S., Ok, Y. S., Igalavithana, A. D., Kirkham, M., Kim, K.-H., & Vikrant, K. (2019). Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 375, 121983.
Yang, Y., Biedendieck, R., Wang, W., Gamer, M., Malten, M., Jahn, D., & Deckwer, W.-D. (2006). High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium. Microbial Cell Factories, 5, 1-14.
Yang, Y., Malten, M., Biedendieck, R., Wang, W., Jahn, D., & Deckwer, W.-D. (2006). Bacillus megaterium as a recombinant protein production host. Microbial Cell Factories, 5, 1-2.
Zajki-Zechmeister, K., Eibinger, M., & Nidetzky, B. (2022). Enzyme Synergy in Transient Clusters of Endo-and Exocellulase Enables a Multilayer Mode of Processive Depolymerization of Cellulose. ACS catalysis, 12(17), 10984-10994.
張基隆, 胡祐甄, 黃姿菁, 鄭筱翎, & 謝寶萱 (2020). 生物化學. In: 華杏出版機構. |