參考文獻 |
Bell, E., Lamminmäki, T., Alneberg, J., Qian, C., Xiong, W., Hettich, R. L., Frutschi, M., & Bernier-Latmani, R. (2022). Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. The ISME Journal, 16(6), 1583-1593.
Boon, A. (2003). Sequencing batch reactors: a review. Water and Environment Journal, 17(2), 68-73.
Burgin, A. J., & Hamilton, S. K. (2007). Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 5(2), 89-96.
Cai, J., Zheng, P., & Mahmood, Q. (2008). Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresource technology, 99(13), 5520-5527.
Campos, J., Carvalho, S., Portela, R., Mosquera-Corral, A., & Méndez, R. (2008). Kinetics of denitrification using sulphur compounds: effects of S/N ratio, endogenous and exogenous compounds. Bioresource technology, 99(5), 1293-1299.
Cao, W. (2015). Nitrogen removal from municipal wastewater by a bioreactor containing ceramic honeycomb. RSC Advances, 5(18), 14042-14046.
Cao, Y., Zhang, C., Rong, H., Zheng, G., & Zhao, L. (2017). The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR). Water Research, 108, 86-94.
Cardoso, R. B., Sierra‐Alvarez, R., Rowlette, P., Flores, E. R., Gomez, J., & Field, J. A. (2006). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and bioengineering, 95(6), 1148-1157.
Chang, Y. J., Ho, C. M., Chang, C. C., & Tseng, S. K. (2006). Denitrification under high dissolved oxygen by a membrane‐attached biofilm reactor. Journal of the Chinese Institute of Engineers, 29(4), 741-745.
Cherchi, C., Onnis‐Hayden, A., El‐Shawabkeh, I., & Gu, A. Z. (2009). Implication of using different carbon sources for denitrification in wastewater treatments. Water Environment Research, 81(8), 788-799.
Chung, J., Amin, K., Kim, S., Yoon, S., Kwon, K., & Bae, W. (2014). Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Research, 58, 169-178.
Cui, Y.-X., Biswal, B. K., Guo, G., Deng, Y.-F., Huang, H., Chen, G.-H., & Wu, D. (2019). Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Applied microbiology and biotechnology, 103, 6023-6039.
Cui, Y.-X., Biswal, B. K., van Loosdrecht, M. C., Chen, G.-H., & Wu, D. (2019). Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. Water Research, 166, 115038.
Cui, Y.-X., Guo, G., Ekama, G. A., Deng, Y.-F., Chui, H.-K., Chen, G.-H., & Wu, D. (2019). Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal. Water Research, 162, 246-257.
Cui, Y.-X., Wu, D., Mackey, H. R., Chui, H.-K., & Chen, G.-H. (2018). Application of a moving-bed biofilm reactor for sulfur-oxidizing autotrophic denitrification. Water Science and Technology, 77(4), 1027-1034.
de la Vega, P. M., de Salazar, E. M., Jaramillo, M., & Cros, J. (2012). New contributions to the ORP & DO time profile characterization to improve biological nutrient removal. Bioresource technology, 114, 160-167.
Deng, Y.-F., Ekama, G. A., Cui, Y.-X., Tang, C.-J., van Loosdrecht, M. C., Chen, G.-H., & Wu, D. (2019). Coupling of sulfur (thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater. Water Research, 163, 114854.
Deng, Y.-F., Zan, F.-x., Huang, H., Wu, D., Tang, W.-t., & Chen, G.-H. (2022). Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review. Water Research, 119051.
Di Capua, F., Ahoranta, S. H., Papirio, S., Lens, P. N., & Esposito, G. (2016). Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus. Process Biochemistry, 51(10), 1576-1584.
Di Capua, F., Lakaniemi, A.-M., Puhakka, J. A., Lens, P. N., & Esposito, G. (2017). High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor. Chemical Engineering Journal, 310, 282-291.
Di Capua, F., Pirozzi, F., Lens, P. N., & Esposito, G. (2019). Electron donors for autotrophic denitrification. Chemical Engineering Journal, 362, 922-937.
Dincer, A. R., & Kargı, F. (2000). Kinetics of sequential nitrification and denitrification processes. Enzyme and microbial technology, 27(1-2), 37-42.
Ding, D., Feng, C., Jin, Y., Hao, C., Zhao, Y., & Suemura, T. (2011). Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination, 276(1-3), 260-265.
Dolejs, P., Paclík, L., Maca, J., Pokorna, D., Zabranska, J., & Bartacek, J. (2015). Effect of S/N ratio on sulfide removal by autotrophic denitrification. Applied microbiology and biotechnology, 99, 2383-2392.
Dominika, G., Joanna, M., & Jacek, M. (2021). Sulfate reducing ammonium oxidation (SULFAMMOX) process under anaerobic conditions. Environmental Technology & Innovation, 22, 101416.
Dong, Z., Lu, M., Huang, W., & Xu, X. (2011). Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. Journal of hazardous materials, 196, 123-130.
Dupla, M., Comeau, Y., Parent, S., Villemur, R., & Jolicoeur, M. (2006). Design optimization of a self-cleaning moving-bed bioreactor for seawater denitrification. Water Research, 40(2), 249-258.
Fajardo, C., Mosquera-Corral, A., Campos, J., & Méndez, R. (2012). Autotrophic denitrification with sulphide in a sequencing batch reactor. Journal of environmental management, 113, 552-556.
Fan, C., Zhou, W., He, S., & Huang, J. (2021). Sulfur transformation in sulfur autotrophic denitrification using thiosulfate as electron donor. Environmental Pollution, 268, 115708.
Fu, C., Li, J., Lv, X., Song, W., & Zhang, X. (2020). Operation performance and microbial community of sulfur-based autotrophic denitrification sludge with different sulfur sources. Environmental geochemistry and health, 42, 1009-1020.
Ge, S., Peng, Y., Wang, S., Lu, C., Cao, X., & Zhu, Y. (2012). Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3-N. Bioresource technology, 114, 137-143.
Glass, C., & Silverstein, J. (1998). Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Research, 32(3), 831-839.
Han, Y., & Perner, M. (2015). The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Frontiers in Microbiology, 6, 989.
How, S. W., Nittami, T., Ngoh, G. C., Curtis, T. P., & Chua, A. S. M. (2020). An efficient oxic-anoxic process for treating low COD/N tropical wastewater: startup, optimization and nitrifying community structure. Chemosphere, 259, 127444.
Hu, M., Zhang, H., & Tian, Y. (2023). Achieving nitrogen removal with low material and energy consumption through partial nitrification coupled with short-cut sulfur autotrophic denitrification in a single-stage SBR. Bioresource technology, 128999.
Huang, S., Yu, D., Chen, G., Wang, Y., Tang, P., Liu, C., Tian, Y., & Zhang, M. (2021). Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. Chemosphere, 278, 130413.
Irvine, R. L., & Ketchum, L. (2004). The sequencing batch reactor and batch operation for the optimal treatment of wastewater. SBR Technology Inc.
Jagaba, A. H., Kutty, S. R. M., Noor, A., Birniwa, A. H., Affam, A. C., Lawal, I. M., Kankia, M. U., & Kilaco, A. U. (2021). A systematic literature review of biocarriers: Central elements for biofilm formation, organic and nutrients removal in sequencing batch biofilm reactor. Journal of Water Process Engineering, 42, 102178.
James, S. N., & Vijayanandan, A. (2022). Anoxic-Aerobic-Anoxic sequencing batch reactor for enhanced nitrogen removal. Bioresource technology, 363, 127892.
Jing, C., Ping, Z., & Mahmood, Q. (2009). Simultaneous sulfide and nitrate removal in anaerobic reactor under shock loading. Bioresource technology, 100(12), 3010-3014.
Khanongnuch, R., Di Capua, F., Lakaniemi, A.-M., Rene, E. R., & Lens, P. N. (2019). Long-term performance evaluation of an anoxic sulfur oxidizing moving bed biofilm reactor under nitrate limited conditions. Environmental Science: Water Research & Technology, 5(6), 1072-1081.
Koenig, A., & Liu, L. (2001). Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Research, 35(8), 1969-1978.
Kostrytsia, A., Papirio, S., Morrison, L., Ijaz, U. Z., Collins, G., Lens, P. N., & Esposito, G. (2018). Biokinetics of microbial consortia using biogenic sulfur as a novel electron donor for sustainable denitrification. Bioresource technology, 270, 359-367.
Lee, H. W., Park, Y. K., Choi, E., & Lee, J. W. (2008). Bacterial community and biological nitrate removal: comparisons of autotrophic and heterotrophic reactors for denitrification with raw sewage. Journal of microbiology and biotechnology, 18(11), 1826-1835.
Lens, P., & Kuenen, J. G. (2001). The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Science and Technology, 44(8), 57-66.
Li, S., Mu, J., Du, Y., & Wu, Z. (2019). Study and application of real-time control strategy based on DO and ORP in nitritation–denitrification SBR start-up. Environmental technology.
Lim, J.-W., Seng, C.-E., Lim, P.-E., Ng, S.-L., & Sujari, A.-N. A. (2011). Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials. Bioresource technology, 102(21), 9876-9883.
Liu, L., & Koenig, A. (2002). Use of limestone for pH control in autotrophic denitrification: batch experiments. Process Biochemistry, 37(8), 885-893.
Liu, S., Xiang, Y., Zhou, T., Ma, H., Shao, Z., & Chai, H. (2022). Insight into thiosulfate-driven denitrification and anammox process: Bigger aggregates driving better nitrite utilization on ammonium and nitrate contained wastewater. Journal of Water Process Engineering, 47, 102669.
Liu, Y., Wang, Y., Fan, G., Su, X., Zhou, J., & Liu, D. (2021). Metagenomics reveals functional species and microbial mechanisms of an enriched thiosulfate-driven denitratation consortia. Bioresource technology, 341, 125916.
Lu, H., Huang, H., Yang, W., Mackey, H. R., Khanal, S. K., Wu, D., & Chen, G.-H. (2018). Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification. Water Research, 133, 165-172.
Manconi, I., Carucci, A., & Lens, P. (2007). Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnology and bioengineering, 98(3), 551-560.
Matos, M., Alves, C., Campos, J., Brito, A., & Nogueira, R. (2011). Sequencing batch biofilm reactor: from support design to reactor operation. Environmental technology, 32(10), 1121-1129.
MEIJER, E. M., VAN DER ZWAAN, J. W., STOUTHAMER, A. H., & WEVER, R. (1979). Anaerobic Respiration and Energy Conservation in Paracoccus denitrficans: Functioning of Iron‐Sulfur Centers and the Uncoupling Effect of Nitrite. European Journal of Biochemistry, 96(1), 69-76.
Mo, H., Oleszkiewicz, J., Cicek, N., & Rezania, B. (2005). Incorporating membrane gas diffusion into a membrane bioreactor for hydrogenotrophic denitrification of groundwater. Water Science and Technology, 51(6-7), 357-364.
Moon, H. S., Chang, S. W., Nam, K., Choe, J., & Kim, J. Y. (2006). Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification. Environmental Pollution, 144(3), 802-807.
Mora, M., Dorado, A. D., Gamisans, X., & Gabriel, D. (2015). Investigating the kinetics of autotrophic denitrification with thiosulfate: Modeling the denitritation mechanisms and the effect of the acclimation of SO-NR cultures to nitrite. Chemical Engineering Journal, 262, 235-241.
Moraes, B. d. S., Souza, T., & Foresti, E. (2012). Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochemistry, 47(9), 1395-1401.
Nisola, G. M., Redillas, M. C., Cho, E., Han, M., Yoo, N., & Chung, W.-J. (2011). Comparison of reactive porous media for sulfur-oxidizing denitrification of high nitrate strength wastewater. Biochemical engineering journal, 58, 79-86.
Oberoi, A. S., Huang, H., Khanal, S. K., Sun, L., & Lu, H. (2021). Electron distribution in sulfur-driven autotrophic denitrification under different electron donor and acceptor feeding schemes. Chemical Engineering Journal, 404, 126486.
Oh, S.-E., Kim, K.-S., Choi, H.-C., Cho, J., & Kim, I. (2000). Kinetics and physiological characteristics of autotrophic dentrification by denitrifying sulfur bacteria. Water Science and Technology, 42(3-4), 59-68.
Oh, S., Yoo, Y., Young, J., & Kim, I. (2001). Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. Journal of Biotechnology, 92(1), 1-8.
Patureau, D., Bernet, N., & Moletta, R. (1996). Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp SGLY2. Journal of Industrial Microbiology and Biotechnology, 16(2), 124-128.
Pishgar, R., Dominic, J. A., Sheng, Z., & Tay, J. H. (2019). Denitrification performance and microbial versatility in response to different selection pressures. Bioresource technology, 281, 72-83.
Qambrani, N. A., Jung, Y. S., Yang, J. E., Ok, Y. S., & Oh, S.-E. (2015). Application of half-order kinetics to sulfur-utilizing autotrophic denitrification for groundwater remediation. Environmental Earth Sciences, 73, 3445-3450.
Qian, J., Zhou, J., Zhang, Z., Liu, R., & Wang, Q. (2016). Biological nitrogen removal through nitritation coupled with thiosulfate-driven denitritation. Scientific reports, 6(1), 1-10.
Qian, W., Ma, B., Li, X., Zhang, Q., & Peng, Y. (2019). Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification. Bioresource technology, 278, 444-449.
Raboni, M., Viotti, P., Rada, E. C., Conti, F., & Boni, M. R. (2020). The sensitivity of a specific denitrification rate under the dissolved oxygen pressure. International Journal of Environmental Research and Public Health, 17(24), 9366.
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications. McGraw-Hill Education.
Rusten, B., Eikebrokk, B., Ulgenes, Y., & Lygren, E. (2006). Design and operations of the Kaldnes moving bed biofilm reactors. Aquacultural engineering, 34(3), 322-331.
Rusten, B., & Wessman, F. (2004). State of the art in Europe of the moving bed biofilm reactor (MBBR) process. WEFTEC 2004,
Sabba, F., Terada, A., Wells, G., Smets, B. F., & Nerenberg, R. (2018). Nitrous oxide emissions from biofilm processes for wastewater treatment. Applied microbiology and biotechnology, 102, 9815-9829.
Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S., & Cinar, O. (2011). Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production. Water Research, 45(20), 6661-6667.
Sahinkaya, E., Yurtsever, A., Aktaş, Ö., Ucar, D., & Wang, Z. (2015). Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chemical Engineering Journal, 268, 180-186.
Seidel, H., Wennrich, R., Hoffmann, P., & Löser, C. (2006). Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments. Chemosphere, 62(9), 1444-1453.
Shao, M.-F., Zhang, T., & Fang, H. H.-P. (2010). Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Applied microbiology and biotechnology, 88(5), 1027-1042.
Shao, M.-F., Zhang, T., Fang, H. H.-P., & Li, X. (2011). The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment. Chemosphere, 83(1), 1-6.
Shen, J., He, R., Han, W., Sun, X., Li, J., & Wang, L. (2009). Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of hazardous materials, 172(2-3), 595-600.
Shin, D.-c., Yoon, S.-c., & Park, C.-h. (2019). Biological characteristics of microorganisms immobilization media for nitrogen removal. Journal of Water Process Engineering, 32, 100979.
Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E., & Field, J. A. (2007). Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Research, 41(6), 1253-1262.
Simard, M.-C., Masson, S., Mercier, G., Benmoussa, H., Blais, J.-F., & Coudert, L. (2015). Autotrophic denitrification using elemental sulfur to remove nitrate from saline aquarium waters. Journal of Environmental Engineering, 141(12), 04015037.
Soares, M. (2002). Denitrification of groundwater with elemental sulfur. Water Research, 36(5), 1392-1395.
Soto, O., Aspé, E., & Roeckel, M. (2007). Kinetics of cross-inhibited denitrification of a high load wastewater. Enzyme and microbial technology, 40(6), 1627-1634.
Sparacino-Watkins, C., Stolz, J. F., & Basu, P. (2014). Nitrate and periplasmic nitrate reductases. Chemical Society Reviews, 43(2), 676-706.
Sun, H., Qing, Y., Yongzhen, P., Xiaoning, S., Shuying, W., & ZHANG, S. (2009). Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate. Chinese Journal of Chemical Engineering, 17(6), 1027-1031.
Sun, Y., & Nemati, M. (2012). Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresource technology, 114, 207-216.
Tadda, M. A., Altaf, R., Gouda, M., Rout, P. R., Shitu, A., Ye, Z., Zhu, S., & Liu, D. (2021). Impact of Saddle-Chips biocarrier on treating mariculture wastewater by moving bed biofilm reactor (MBBR): Mechanism and kinetic study. Journal of Environmental Chemical Engineering, 9(6), 106710.
Valdivia, A., Gonzalez-Martinez, S., & Wilderer, P. (2007). Biological nitrogen removal with three different SBBR. Water Science and Technology, 55(7), 245-254.
Vishniac, W., & Santer, M. (1957). The thiobacilli. Bacteriological reviews, 21(3), 195-213.
Wang, J.-J., Huang, B.-C., Li, J., & Jin, R.-C. (2020). Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. Chinese Chemical Letters, 31(10), 2567-2574.
Wang, Y., Bi, H.-Y., Chen, H.-G., Zheng, P.-F., Zhou, Y.-L., & Li, J.-T. (2022). Metagenomics Reveals Dominant Unusual Sulfur Oxidizers Inhabiting Active Hydrothermal Chimneys From the Southwest Indian Ridge. Frontiers in Microbiology, 13.
Ward, M. H., Jones, R. R., Brender, J. D., De Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., & Van Breda, S. G. (2018). Drinking water nitrate and human health: an updated review. International Journal of Environmental Research and Public Health, 15(7), 1557.
Xue, M., Nie, Y., Cao, X., & Zhou, X. (2022). Deciphering the influence of S/N ratio in a sulfite-driven autotrophic denitrification reactor. Science of The Total Environment, 836, 155612.
Yang, W., Lu, H., Khanal, S. K., Zhao, Q., Meng, L., & Chen, G.-H. (2016). Granulation of sulfur-oxidizing bacteria for autotrophic denitrification. Water Research, 104, 507-519.
Yang, Y., Gerrity, S., Collins, G., Chen, T., Li, R., Xie, S., & Zhan, X. (2018). Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal. Process Biochemistry, 68, 165-170.
Yang, Y., Perez Calleja, P., Liu, Y., Nerenberg, R., & Chai, H. (2022). Assessing Intermediate Formation and Electron Competition during Thiosulfate-Driven Denitrification: An Experimental and Modeling Study. Environmental Science & Technology, 56(16), 11760-11770.
Yuan, Q., Wang, H., Hang, Q., Deng, Y., Liu, K., Li, C., & Zheng, S. (2015). Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent. Environmental Science and Pollution Research, 22, 13970-13979.
Yuan, Y., Li, X., Li, W., Shi, M., Zhang, M., Xu, P.-l., Li, B.-l., & Huang, Y. (2022). Effects of different reduced sulfur forms as electron donors in the start-up process of short-cut sulfur autotrophic denitrification. Bioresource technology, 354, 127194.
Zhang, M., Tan, Y., Fan, Y., Gao, J., Liu, Y., Lv, X., Ge, L., & Wu, J. (2022). Nitrite accumulation, denitrification kinetic and microbial evolution in the partial denitrification process: The combined effects of carbon source and nitrate concentration. Bioresource technology, 361, 127604.
Zhang, X., Wang, X., Feng, W., Li, X., & Lu, H. (2020). Investigating COD and Nitrate–Nitrogen Flow and Distribution Variations in the MUCT Process Using ORP as a Control Parameter. ACS omega, 5(9), 4576-4587.
Zhang, X., Zhang, N., Chen, Z., Ma, Y., Wang, L., Zhang, H., & Jia, J. (2019). Long-term impact of sulfate on an autotrophic nitrogen removal system integrated partial nitrification, anammox and endogenous denitrification (PAED). Chemosphere, 235, 336-343.
Zhu, Z., Qin, J., Chen, Z., Chen, Y., Chen, H., & Wang, X. (2022). Sulfammox forwarding thiosulfate-driven denitrification and anammox process for nitrogen removal. Environmental Research, 214, 113904.
Zia, K. M., Bhatti, H. N., & Bhatti, I. A. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and functional polymers, 67(8), 675-692.
Zou, G., Papirio, S., Lakaniemi, A., Ahoranta, S., & Puhakka, J. (2016). High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chemical Engineering Journal, 284, 1287-1294.
內政部營建署下水道工程處. (2022). 110年度污水下水道統計要覽.
王公辰. (2021). 活性污泥異營與自營脫硝反應動力特性之研究 國立中央大學].
行政院環保署. (2019). 放流水標準.
行政院環保署. (2022). 飲用水水質標準.
張哲維. (2022). 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響 國立中央大學]. |