博碩士論文 110323099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.219.206.102
姓名 梁昭敏(Chao-Min Liang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同背景音影響下之腦波分析
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討在不同聲音情境下專注與安靜放鬆之腦波狀態。實驗使用腦波儀測量人體頭部表面電訊號,分析受試者於安靜、管弦樂、噪音和混合音等聲音情境下之腦波訊號,以作為後續專注度分析數據。腦波經由訊號處理來濾除雜訊,以減少雜訊干擾,降低分析上的錯誤。接著使用碎形維度(fractal dimension)、近似熵(approximate entropy)、與經過希爾伯特-黃轉換(Hilbert-Huang transform)後所得的alpha與beta頻段功率作為分類的特徵指標,並於後續利用接收者操作特徵曲線(receiver operating characteristic curve)與支持向量機(support vector machine)兩種分析工具進行腦波情境分類,判別受試者在各種情境間的腦波差異狀況及不同情境對專注力影響。
摘要(英) In this study, we discussed the brain wave modes of concentration and relaxation under various sound conditions. Twenty-four participants were recruited to play the attention game in the quiet, orchestra, noise and mixed sound states through human factors experiments. The brain waves were filtered out by signal processing to reduce noise interference and analytical errors. Then, we used the fractal dimension, the approximate entropy and the alpha and beta band power as features in the brainwave analysis. Furthermore, the brainwave classification was performed by using two analysis tools, including receiver operating characteristic curve (ROC curve) and support vector machine (SVM), to identify the difference in brainwave status between different contexts and the effect of different contexts on concentration.
關鍵字(中) ★ 腦電圖
★ 碎形維度
★ 希爾伯特-黃轉換
★ 支持向量機
★ 專注力
關鍵字(英) ★ EEG
★ fractal dimension
★ Hilbert-Huang transform
★ support vector machine
★ concentration
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 1
1-3 論文架構 2
第二章 文獻回顧 3
2-1 腦電波 3
2-2 腦電圖量測與分析 6
2-3腦波注意力及專注力判別 9
2-4 音樂對大腦之影響 10
第三章 實驗架構與分析方法 11
3-1 實驗設計 11
3-2 實驗環境與設備 11
3-2-1 實驗環境 11
3-2-2 腦波儀及音響設備 12
3-3 實驗流程 14
3-4 專注力遊戲 16
3-5實驗數據分析方法 17
3-5-1 眨眼訊號檢測 17
3-5-2 碎形維度 (Fractal Dimension, FD) 19
3-5-3 近似熵 (Approximate Entropy, ApEn) 22
3-5-4 希爾伯特-黃轉換法 (Hilbert-Huang Transform, HHT) 23
3-5-4-1經驗模態分解法(Empirical Mode Decomposition,EMD) 23
3-5-4-2希爾伯特轉換 (Hilbert Transform, HT) 27
3-5-5接受者操作特徵曲線 (Receiver Operating Characteristic Curve, ROC curve) 29
3-5-6 支持向量機 (Support Vector Machine, SVM) 32
3-5-7 交叉驗證 (Cross Validation) 36
第四章 實驗數據分析流程 37
4-1 雜訊處理 37
4-2 特徵萃取 40
4-3 數據分析 41
第五章 實驗結果與分析 44
5-1 ROC曲線分析 44
5-2 單特徵SVM 55
5-3 多特徵SVM 57
5-4 不同音樂對專注之影響性 58
5-5 實驗遊戲結果及主觀問卷分析 59
第六章 結論與未來展望 61
參考文獻 63
參考文獻 [1] Zhou TH, Liang W, Liu H, Wang L, Ryu KH, Nam KW. EEG emotion recognition applied to the effect analysis of music on emotion changes in psychological healthcare. Int J Environ Res Public Health. 2022 Dec 26;20(1):378. doi: 10.3390/ijerph20010378.
[2] 網路資料,取自美國音樂治療協會網站: https://www.musictherapy.org/about/history/
[3] Quintin EM. Music-evoked reward and emotion: relative strengths and response to intervention of people with asd. Front Neural Circuits. 2019 Sep 18;13:49. doi: 10.3389/fncir.2019.00049.
[4] Gómez-Gallego M, Gómez-Gallego JC, Gallego-Mellado M, García-García J. Comparative efficacy of active group music intervention versus group music listening in alzheimer′s disease. Int J Environ Res Public Health. 2021 Jul 30;18(15):8067. doi: 10.3390/ijerph18158067.
[5] 蔡昀安,「不同環境音下之腦電波特徵分析」,國立中央大學碩士論文,民國110年。
[6] 符祐嘉,「基於腦波分析之不同環境音下專注力識別」,國立中央大學碩士論文,民國111年。
[7] Nayak CS, Anilkumar AC. EEG normal waveforms. 2023 Apr 16. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–.
[8] Jing XJ, Ao YJ, Ouyang YJ, Liu Y, Wang YF. The physiological and psychological mechanisms of infra-slow oscillation. Sheng Li Xue Bao. 2021 Dec 25;73(6):973-979. Chinese.
[9] Priyanka A. Abhang, Bharti W. Gawali, Suresh C. Mehrotra, Chapter 3-technical aspects of brain rhythms and speech parameters, introduction to eeg- and speech-based emotion recognition,academic press,2016,Pages 51-79.
[10] Frauscher B, Bartolomei F, Kobayashi K, Cimbalnik J, van ′t Klooster MA, Rampp S, Otsubo H, Höller Y, Wu JY, Asano E, Engel J Jr, Kahane P, Jacobs J, Gotman J. High-frequency oscillations: The state of clinical research. Epilepsia. 2017 Aug;58(8):1316-1329. doi: 10.1111/epi.13829.
[11] Feyissa AM, Tatum WO. Adult EEG. Handb clin neurol. 2019;160:103-124. doi: 10.1016/B978-0-444-64032-1.00007-2.
[12] Marzbani H, Marateb HR, Mansourian M. Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic Clin Neurosci. 2016 Apr;7(2):143-58. doi: 10.15412/J.BCN.03070208.
[13] Xu L, Liu J, Xiao G and Jin W, Characterization and classification of eeg attention based on fuzzy entropy, 2012 Third International Conference on Digital Manufacturing & Automation, Guilin, China, 2012, pp. 277-280, doi: 10.1109/ICDMA.2012.67.
[14] Yang SM, Chen CM and Yu CM, Assessing the attention levels of students by using a novel attention aware system based on brainwave signals, 2015 IIAI 4th International Congress on Advanced Applied Informatics, Okayama, Japan, 2015, pp. 379-384, doi: 10.1109/IIAI-AAI.2015.224.
[15] Hassan R, Hasan S, Hasan MJ, M. Jamader MR, Eisenberg D and Pias T, Human attention recognition with machine learning from brain-eeg signals, 2020 IEEE 2nd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, 2020, pp. 16-19, doi: 10.1109/ECBIOS50299.2020.9203672.
[16] Teixeira AR, Tomé A, Roseiro L and Gomes A, Does music help to be more attentive while performing a task? A brain activity analysis, 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 2018, pp. 1564-1570, doi: 10.1109/BIBM.2018.8621388.
[17] Begum MM, Uddin MS, Rithy JF, Kabir J, Tewari D, Islam A, Ashraf GM. Analyzing the impact of soft, stimulating and depressing songs on attention among undergraduate students: a cross-sectional pilot study in bangladesh. Front Psychol. 2019 Feb 5;10:161. doi: 10.3389/fpsyg.2019.00161.
[18] Kiss L, Linnell KJ. The effect of preferred background music on task-focus in sustained attention. Psychol Res. 2021 Sep;85(6):2313-2325. doi: 10.1007/s00426-020-01400-6.
[19] 網路資料,取自神念科技網站: http://neurosky.com/
[20] Kim B and Stein H. (2009). A spreadsheet program for making a balanced Latin Square design. Revista Colombiana de Ciencias Pecuarias. 22. 591-596.
[21] Agarwal M and Sivakumar R, Blink: a fully automated unsupervised algorithm for eye-blink detection in EEG signals, 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 2019, pp. 1113-1121, doi: 10.1109/ALLERTON.2019.8919795.
[22] Kisan S, Mishra S, Bhattacharjee G and Bansal R, Analytical study on fractal dimension- a review, 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), Bhubaneswar, India, 2018, pp. 380-384, doi: 10.1109/ICRIEECE44171.2018.9009359.
[23] Wanliss JA, Wanliss GE. Efficient calculation of fractal properties via the Higuchi method. Nonlinear Dyn. 2022;109(4):2893-2904. doi: 10.1007/s11071-022-07353-2.
[24] Higuchi T, Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena,Volume 31, Issue 2,1988,Pages 277-283.
[25] Chu Kiong, Loo & Samraj, Andrews & Lee, Gin. Evaluation of methods for estimating fractal dimension in motor imagery-based brain computer interface. Discrete Dynamics in Nature and Society. 2011.
[26] Delgado-Bonal A, Marshak A. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy (basel). 2019 May 28;21(6):541. doi: 10.3390/e21060541.
[27] Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301. doi: 10.1073/pnas.88.6.2297.
[28] Zhang Y, Hilbert-huang transform and marginal spectrum for detection of bearing localized defects, 2006 6th World Congress on Intelligent Control and Automation, Dalian, 2006, pp. 5457-5461, doi: 10.1109/WCICA.2006.1714115.
[29] Kottawar N and Tuptewar DJ, Comparative analysis of digital image stabilization by using empirical mode decomposition methods, 2014 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 2014, pp. 1-5, doi: 10.1109/ICCIC.2014.7238284.
[30] Huang S, Zhang Y and Liu Z, Image feature extraction and analysis based on empirical mode decomposition, 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi′an, China, 2016, pp. 615-619, doi: 10.1109/IMCEC.2016.7867283.
[31] Du W-t, Zeng Q, Shao Y-m, Wang L-m, Ding X-x. Multi-scale demodulation for fault diagnosis based on a weighted-emd de-noising technique and time–frequency envelope analysis. Applied Sciences. 2020; 10(21):7796.
[32] Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys Med Biol. 2018 Mar 29;63(7):07TR01. doi: 10.1088/1361-6560/aab4b1.
[33] Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol. 2022 Feb;75(1):25-36. doi: 10.4097/kja.21209.
[34] Hu J, Zhou T, Ma S, Yang D, Guo M, Huang P. Rock mass classification prediction model using heuristic algorithms and support vector machines: a case study of Chambishi copper mine. Sci Rep. 2022 Jan 18;12(1):928. doi: 10.1038/s41598-022-05027-y.
[35] Peng CJ, Chen YC, Chen CC et al. An EEG-based attentiveness recognition system using hilbert–huang transform and support vector machine. J. Med. Biol. Eng. 40, 230–238 (2020).
[36] George Kimeldorf, Grace Wahba, Some results on tchebycheffian spline functions,journal of mathematical analysis and applications,Volume 33, Issue 1,1971,Pages 82-95.
[37] Chang C, Lin C. “LIBSVM: A library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27 (2011).
[38] Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological) 36, no. 2 (1974): 111–47.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明