參考文獻 |
[1] Zhou TH, Liang W, Liu H, Wang L, Ryu KH, Nam KW. EEG emotion recognition applied to the effect analysis of music on emotion changes in psychological healthcare. Int J Environ Res Public Health. 2022 Dec 26;20(1):378. doi: 10.3390/ijerph20010378.
[2] 網路資料,取自美國音樂治療協會網站: https://www.musictherapy.org/about/history/
[3] Quintin EM. Music-evoked reward and emotion: relative strengths and response to intervention of people with asd. Front Neural Circuits. 2019 Sep 18;13:49. doi: 10.3389/fncir.2019.00049.
[4] Gómez-Gallego M, Gómez-Gallego JC, Gallego-Mellado M, García-García J. Comparative efficacy of active group music intervention versus group music listening in alzheimer′s disease. Int J Environ Res Public Health. 2021 Jul 30;18(15):8067. doi: 10.3390/ijerph18158067.
[5] 蔡昀安,「不同環境音下之腦電波特徵分析」,國立中央大學碩士論文,民國110年。
[6] 符祐嘉,「基於腦波分析之不同環境音下專注力識別」,國立中央大學碩士論文,民國111年。
[7] Nayak CS, Anilkumar AC. EEG normal waveforms. 2023 Apr 16. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–.
[8] Jing XJ, Ao YJ, Ouyang YJ, Liu Y, Wang YF. The physiological and psychological mechanisms of infra-slow oscillation. Sheng Li Xue Bao. 2021 Dec 25;73(6):973-979. Chinese.
[9] Priyanka A. Abhang, Bharti W. Gawali, Suresh C. Mehrotra, Chapter 3-technical aspects of brain rhythms and speech parameters, introduction to eeg- and speech-based emotion recognition,academic press,2016,Pages 51-79.
[10] Frauscher B, Bartolomei F, Kobayashi K, Cimbalnik J, van ′t Klooster MA, Rampp S, Otsubo H, Höller Y, Wu JY, Asano E, Engel J Jr, Kahane P, Jacobs J, Gotman J. High-frequency oscillations: The state of clinical research. Epilepsia. 2017 Aug;58(8):1316-1329. doi: 10.1111/epi.13829.
[11] Feyissa AM, Tatum WO. Adult EEG. Handb clin neurol. 2019;160:103-124. doi: 10.1016/B978-0-444-64032-1.00007-2.
[12] Marzbani H, Marateb HR, Mansourian M. Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic Clin Neurosci. 2016 Apr;7(2):143-58. doi: 10.15412/J.BCN.03070208.
[13] Xu L, Liu J, Xiao G and Jin W, Characterization and classification of eeg attention based on fuzzy entropy, 2012 Third International Conference on Digital Manufacturing & Automation, Guilin, China, 2012, pp. 277-280, doi: 10.1109/ICDMA.2012.67.
[14] Yang SM, Chen CM and Yu CM, Assessing the attention levels of students by using a novel attention aware system based on brainwave signals, 2015 IIAI 4th International Congress on Advanced Applied Informatics, Okayama, Japan, 2015, pp. 379-384, doi: 10.1109/IIAI-AAI.2015.224.
[15] Hassan R, Hasan S, Hasan MJ, M. Jamader MR, Eisenberg D and Pias T, Human attention recognition with machine learning from brain-eeg signals, 2020 IEEE 2nd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, 2020, pp. 16-19, doi: 10.1109/ECBIOS50299.2020.9203672.
[16] Teixeira AR, Tomé A, Roseiro L and Gomes A, Does music help to be more attentive while performing a task? A brain activity analysis, 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 2018, pp. 1564-1570, doi: 10.1109/BIBM.2018.8621388.
[17] Begum MM, Uddin MS, Rithy JF, Kabir J, Tewari D, Islam A, Ashraf GM. Analyzing the impact of soft, stimulating and depressing songs on attention among undergraduate students: a cross-sectional pilot study in bangladesh. Front Psychol. 2019 Feb 5;10:161. doi: 10.3389/fpsyg.2019.00161.
[18] Kiss L, Linnell KJ. The effect of preferred background music on task-focus in sustained attention. Psychol Res. 2021 Sep;85(6):2313-2325. doi: 10.1007/s00426-020-01400-6.
[19] 網路資料,取自神念科技網站: http://neurosky.com/
[20] Kim B and Stein H. (2009). A spreadsheet program for making a balanced Latin Square design. Revista Colombiana de Ciencias Pecuarias. 22. 591-596.
[21] Agarwal M and Sivakumar R, Blink: a fully automated unsupervised algorithm for eye-blink detection in EEG signals, 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 2019, pp. 1113-1121, doi: 10.1109/ALLERTON.2019.8919795.
[22] Kisan S, Mishra S, Bhattacharjee G and Bansal R, Analytical study on fractal dimension- a review, 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), Bhubaneswar, India, 2018, pp. 380-384, doi: 10.1109/ICRIEECE44171.2018.9009359.
[23] Wanliss JA, Wanliss GE. Efficient calculation of fractal properties via the Higuchi method. Nonlinear Dyn. 2022;109(4):2893-2904. doi: 10.1007/s11071-022-07353-2.
[24] Higuchi T, Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena,Volume 31, Issue 2,1988,Pages 277-283.
[25] Chu Kiong, Loo & Samraj, Andrews & Lee, Gin. Evaluation of methods for estimating fractal dimension in motor imagery-based brain computer interface. Discrete Dynamics in Nature and Society. 2011.
[26] Delgado-Bonal A, Marshak A. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy (basel). 2019 May 28;21(6):541. doi: 10.3390/e21060541.
[27] Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301. doi: 10.1073/pnas.88.6.2297.
[28] Zhang Y, Hilbert-huang transform and marginal spectrum for detection of bearing localized defects, 2006 6th World Congress on Intelligent Control and Automation, Dalian, 2006, pp. 5457-5461, doi: 10.1109/WCICA.2006.1714115.
[29] Kottawar N and Tuptewar DJ, Comparative analysis of digital image stabilization by using empirical mode decomposition methods, 2014 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 2014, pp. 1-5, doi: 10.1109/ICCIC.2014.7238284.
[30] Huang S, Zhang Y and Liu Z, Image feature extraction and analysis based on empirical mode decomposition, 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi′an, China, 2016, pp. 615-619, doi: 10.1109/IMCEC.2016.7867283.
[31] Du W-t, Zeng Q, Shao Y-m, Wang L-m, Ding X-x. Multi-scale demodulation for fault diagnosis based on a weighted-emd de-noising technique and time–frequency envelope analysis. Applied Sciences. 2020; 10(21):7796.
[32] Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys Med Biol. 2018 Mar 29;63(7):07TR01. doi: 10.1088/1361-6560/aab4b1.
[33] Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol. 2022 Feb;75(1):25-36. doi: 10.4097/kja.21209.
[34] Hu J, Zhou T, Ma S, Yang D, Guo M, Huang P. Rock mass classification prediction model using heuristic algorithms and support vector machines: a case study of Chambishi copper mine. Sci Rep. 2022 Jan 18;12(1):928. doi: 10.1038/s41598-022-05027-y.
[35] Peng CJ, Chen YC, Chen CC et al. An EEG-based attentiveness recognition system using hilbert–huang transform and support vector machine. J. Med. Biol. Eng. 40, 230–238 (2020).
[36] George Kimeldorf, Grace Wahba, Some results on tchebycheffian spline functions,journal of mathematical analysis and applications,Volume 33, Issue 1,1971,Pages 82-95.
[37] Chang C, Lin C. “LIBSVM: A library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27 (2011).
[38] Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological) 36, no. 2 (1974): 111–47. |