類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共_8_頁第__頁

- 本測驗試題為多選題(答案可能有一個或多個),請選出所有正確或最適當的答案,並請將答案用2B鉛筆填於答案卡。
- 共二十題,每題五分。每題ABCDE選項單獨計分;每一選項個別分數為一分,答錯倒扣一分,倒扣至本測驗試題零分為止。

Notation: In the following problems, \mathbb{R} is the usual set of all real numbers. We will use underlined letters such as $\underline{a} \in \mathbb{R}^n$ to denote a real, column vector \underline{a} of length n. $\|\underline{a}\|$ means the Frobenius norm of vector \underline{a} , and $\underline{0}$ is the all-zero column vector of proper length. We will use boldface letters such as $A \in \mathbb{R}^{m \times n}$ to denote a real matrix A of size $m \times n$, and we will write $A = [a_{i,j}] \in \mathbb{R}^{m \times n}$, where $a_{i,j}$ is the (i,j)-th entry of A with subindices $i=1,\ldots,m$, and $j=1,\ldots,n$. A^{\top} is the transpose of matrix A. rank(A) denotes the rank of matrix A. I_n is the $n \times n$ identity matrix. $\det(A)$ and $\operatorname{tr}(A)$ are respectively the determinant and trace of square matrix A. $\operatorname{row}(A)$, $\operatorname{col}(A)$ and $\operatorname{null}(A)$ are the row, column and right null spaces of A over \mathbb{R} , respectively. Unless otherwise stated, all vector spaces and linear combinations are over field \mathbb{R} , and the orthogonality is with respect to the usual Euclidean inner product. By $\dim(\mathcal{W})$ we mean the dimension of vector space \mathcal{W} over its base field \mathbb{R} . $\mathcal{L}: f(t) \mapsto F(s)$ and $\mathcal{L}^{-1}: F(s) \mapsto f(t)$ denote the unilateral Laplace and inverse Laplace transforms for $t \geq 0$, respectively. Primes of functions of one variable denote the derivatives with respect to the variable, for instance, $y'(x) = \frac{d}{dx}y(x)$, $y''(x) = \frac{d^2}{dx^2}y(x)$, etc.

1. Consider the matrix:

which has reduced row echelon form of the following

$$\left[\begin{array}{cccccc} 1 & 0 & 0 & x & y \\ 0 & 1 & 0 & z & w \\ 0 & 0 & 1 & u & \frac{54}{23} \end{array}\right].$$

Which of the following statements is/are true?

- (A) $x = \frac{29}{23}$
- (B) $y = -\frac{31}{23}$
- (C) $z = \frac{51}{23}$.
- (D) $w = -\frac{86}{23}$
- (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共_8_頁第_2_頁

2. Let

$$\mathbb{A} = \frac{1}{8} \left[\begin{array}{cc} \sqrt{3} & 1\\ -1 & \sqrt{3} \end{array} \right]$$

and

$$(\mathbb{A}^{-1})^{10} = \left[\begin{array}{cc} x & y \\ z & w \end{array} \right].$$

Which of the following statements is/are true?

- (A) x = 524288.
- (B) y = 524288.
- (C) z = 1048576.
- (D) w = 1048576.
- (E) None of the above is true.

3. Given the matrix A below

$$\mathbf{A} = \left[\begin{array}{cccc} 1 & 2 & -3 & 2 \\ 0 & -1 & -1 & 3 \\ 1 & 4 & -1 & -2 \end{array} \right],$$

which of the following statements is/are true?

- (A) $\dim(\operatorname{col}(\mathbb{A})) = 3$.
- (B) $\dim(\text{row}(A)) = 2$.
- (C) $\dim(\text{null}(A)) = 1$.
- (D) $\dim(\text{null}(\mathbb{A}^{\top})) = 1$
- (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

4. Suppose $\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation such that

$$\mathcal{T}\left(\left[\begin{array}{c}1\\1\\1\end{array}\right]\right) = \left[\begin{array}{c}4\\8\end{array}\right], \ \mathcal{T}\left(\left[\begin{array}{c}1\\0\\1\end{array}\right]\right) = \left[\begin{array}{c}3\\6\end{array}\right], \ \mathcal{T}\left(\left[\begin{array}{c}2\\1\\1\end{array}\right]\right) = \left[\begin{array}{c}5\\10\end{array}\right].$$

Now if for any $[x_1, x_2, x_3]^{\top} \in \mathbb{R}^3$

$$\mathcal{T}\left(\left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight]
ight)=\left[egin{array}{c} a \ b \end{array}
ight],$$

then which of the following statements is/are true?

- (A) $a+b=3x_1+3x_2+6x_3$.
- (B) $a-2b=-3x_1+3x_2-6x_3$.
- (C) $2a + b = 4x_1 + 4x_2 + 2x_3$.
- (D) $b-a=x_1+x_2+2x_3$.
- (E) None of the above is true.
- 5. Continue from Problem 4. The following is a basis for the null space (kernel) of linear transformation \mathcal{T}

$$\left\{ \left[\begin{array}{c} -1\\1\\a \end{array} \right], \left[\begin{array}{c} -2\\0\\b \end{array} \right] \right\}.$$

Which of the following statements is/are true?

- (A) a + b = 1.
- (B) a b = 0.
- (C) a/b = 2.
- (D) $a\sqrt{b} = 0$.
- (E) None of the above is true.
- 6. Consider the linear system $\underline{A}\underline{x} = \underline{b}$ in the unknown \underline{x} , where $\underline{A} \in \mathbb{R}^{n \times n}$ and $\underline{b} \in \mathbb{R}^n$ are both nonzero. Which of the following statements is/are true?
 - (A) The system is consistent if $\underline{b}^{\mathsf{T}} \mathbf{A} \neq \underline{0}^{\mathsf{T}}$.
 - (B) The system can be consistent if $\underline{b}^{\mathsf{T}} \mathbf{A} = \underline{0}^{\mathsf{T}}$.
 - (C) The system is inconsistent only if A has nullity larger than zero.
 - (D) The system has infinitely many solutions only if A has a zero eigenvalue.
 - (E) None of the above is true.

類組:<u>電機類</u> 科目:工程數學 C(3005)

共_8 頁第4 頁

7. For the square matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \end{bmatrix},$$

which of the following statements is/are true?

- (A) rank(A) = 3.
- (B) $\det(\mathbf{A}\mathbf{A}^{\mathsf{T}}) = -2$.
- (C) The linear system $\mathbf{A}^{\mathsf{T}} \mathbf{A} \underline{x} = \underline{b}$ in the unknown \underline{x} is consistent for every $\underline{b} \in \mathbb{R}^3$.
- (D) The matrix $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ has an eigenvector \underline{e} with $\|\underline{e}\| = 1$ such that $\mathbf{A}\underline{e} = \underline{0}$.
- (E) None of the above is true.
- 8. A symmetric positive-definite matrix $\mathbb{A} = [a_{i,j}] \in \mathbb{R}^{3 \times 3}$ has eigenvalues 1, 1, 3. Which of the following statements is/are true?
 - (A) The maximum of the quadratic form $\underline{x}^{\top} A \underline{x}$ over all $\underline{x} \in \mathbb{R}^3$ subject to $||\underline{x}|| = 1$ is 6.
 - (B) The product $a_{1,1}a_{2,2}a_{3,3}$ of diagonal entries can be negative.
 - (C) The matrix $A I_3$ has nullity equal to one.
 - (D) Any matrix $\mathbf{B} \in \mathbb{R}^{3\times 3}$ with eigenvalues equal to 1, 1, 3 must be similar to A.
 - (E) None of the above is true.
 - 9. For

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} \text{ and } \underline{b} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix},$$

which of the following statements is/are true?

- (A) The orthogonal projection of \underline{b} onto $\operatorname{col}(\mathbb{A})$ is $[3,3,3]^{\top}$.
- (B) $\min_{\underline{x} \in \mathbb{R}^2} \|\mathbf{A}\underline{x} \underline{b}\|^2 = 6.$
- (C) Let \mathcal{L} be the set of least squares solutions to the system $\mathbf{A}\underline{x} = \underline{b}$ in the unknown \underline{x} ; then \mathcal{L} is a subspace of \mathbb{R}^2 .
- (D) $\min_{\underline{x}\in\mathcal{L}} ||\underline{x}||^2 = \frac{1}{4}$, where \mathcal{L} is defined in (C).
- (E) None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

共 8 頁 第 5 頁

- 10. Consider the transformation $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^{2\times 2}$ given by $\mathcal{T}(\underline{x}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \underline{x}^{\mathsf{T}} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. Which of the following statements is/are true?
 - (A) \mathcal{T} is one-to-one.
 - (B) \mathcal{T} is onto.
 - (C) The range of $\mathcal T$ is a vector space over $\mathbb R$ with dimension equal to one.
 - (D) There does not exist $\underline{x} \in \mathbb{R}^2$ such that $\mathcal{T}(\underline{x}) = \begin{bmatrix} -2 & 1 \\ 3 & 1 \end{bmatrix}$.
 - (E) None of the above is true.
- 11. Consider the following differential equation:

$$(2y^2 - 9xy)dx + (3xy - 6x^2)dy = 0.$$

Which of the following statements is/are true?

- (A) This is a nonlinear differential equation.
- (B) This equation is not exact.
- (C) There exists an integrating factor that depends only on x.
- (D) There exists an integrating factor that depends only on y.
- (E) None of the above is true.
- 12. Continue from Problem 11. Determine the particular solution y(x) satisfying y(1) = 3. Which of the following statements is/are true?
 - (A) y(2) = 0.
 - (B) y'(4) = 3.
 - (C) y(3) = 9.
 - (D) y'(6) = 0.
 - (E) None of the above is true.

台灣聯合大學系統 113 學年度碩士班招生考試試題

類組: 電機類 科目: 工程數學 C(3005)

共_8 頁 第_6 頁

13. Consider the following differential equation:

$$(x-4+4x^{-1})y''(x)+(2-x)y'(x)+y(x)=1.$$

Which of the following statements is/are true?

- (A) This is a nonhomogeneous differential equation.
- (B) Suppose $y_1(x)$ and $y_2(x)$ are two particular solutions of this equation. Then $y_1(x) + y_2(x)$ is also a solution of this equation.
- (C) There exists a solution $y(x) = e^{\lambda x}$, where λ is a nonzero constant.
- (D) There exist three particular solutions that are linearly independent over \mathbb{R} for this equation.
- (E) None of the above is true.

14. Continue from Problem 13. Determine the particular solution y(x) satisfying y(1) = 0 and y''(3) = 0. Which of the following statements is/are true?

- (A) y(2) = 4.
- (B) y(4) = 3.
- (C) y'(6) = 0.
- (D) y'(8) = 1.
- (E) None of the above is true.

15. Consider the following system of differential equations:

$$x'(t) + y'(t) + 2y(t) = 0,$$

$$x'(t) - 3x(t) - 2y(t) = 0.$$

Suppose x(0) = 1 and y(0) = -3. Which of the following statements is/are true?

- (A) x''(t) x'(t) + 6x(t) = 0.
- (B) y''(t) 2y'(t) + 6y(t) = 0.
- (C) y''(0) = 9x'(0).
- (D) x''(0) = y'(0).
- (E) None of the above is true.

台灣聯合大學系統113學年度碩士班招生考試試題

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共 8 頁第一頁

16. For the following second order differential equation

$$(2x^2 - x^3)y''(x) + (3x - 2x^2)y'(x) - (1 + 8x)y(x) = 0,$$

let $y_1(x) = x^{r_1} \sum_{n\geq 0} a_n x^n$ and $y_2(x) = x^{r_2} \sum_{n\geq 0} b_n x^n$ be the two linearly independent Frobenius series solutions for y(x) when x>0, where r_1 and r_2 are the zeros of the corresponding indicial equation with $r_1 \geq r_2$. Which of the following statements is/are true?

- (A) $r_1 r_2$ is not an integer.
- (B) $r_1 + r_2 > 0$.
- (C) $|r_1r_2|=4$.
- (D) $r_1/r_2 > 0$.
- (E) None of the above is true.

17. Consider the following integral equation

$$y(t) + 2 \int_0^t y(\tau) \cos(t - \tau) d\tau = 3e^{-t} + 2\sin(t).$$

Which of the following statements is/are true regarding the values of $Y(s) = \mathcal{L}\{y(t)\}$?

- (A) Y(0) = 4.
- (B) Y(-2) < 0.
- (C) $|Y(\sqrt{-1})| = 1$.
- (D) Y(1) > 1.
- (E) None of the above is true.

18. Continue from Problem 17. Which of the following statements is/are true regarding the solution y(t) to the integral equation?

- (A) y(1) > 0
- (B) y'(0) < 0
- (C) y''(0) > 0.
- (D) y(t) > 0 for all $t \in \mathbb{R}$.
- (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共_8.頁第_8_頁

19. Consider the following boundary value problem for the bivariate function f(x,t) that is defined for $x \in [0,2]$ and $t \geq 0$ and satisfies the following conditions

$$3\frac{\partial}{\partial t}f(x,t) = \frac{\partial^2}{\partial x^2}f(x,t),$$

$$\frac{\partial}{\partial x}f(x,t)\bigg|_{x=0} = \frac{\partial}{\partial x}f(x,t)\bigg|_{x=2} = 0, \text{ for all } t > 0,$$

$$f(x,0)=4x.$$

The solution f(x,t) can be represented in the following form

$$f(x,t) = \sum_{n=0}^{\infty} e^{d_n t} \left[a_n \cos(c_n x) + b_n \sin(c_n x) \right]$$

for some $a_n, b_n, c_n, d_n \in \mathbb{R}$ with $c_n \geq 0$, $d_0 > d_1 > \cdots$ and $|a_n| + |b_n| > 0$ for all $n = 0, 1, \ldots$ Which of the following statements is/are true regarding the values of a_n and b_n in the representation of solution f(x,t)?

- (A) $a_0 \ge 0 \text{ and } b_0 \le 0.$
- (B) $a_1 \leq 1$.
- (C) $a_1/a_2 = 9$.
- (D) $a_2 > b_2$.
- (E) None of the above is true.
- 20. Continue from Problem 19. Which of the following statements is/are true regarding the values of c_n and d_n in the representation of solution f(x,t)?
 - (A) $d_0 = 0$.
 - (B) $c_1^2 + d_1 = \frac{\pi^2}{3}$.
 - (C) $c_2^2 + d_1 = -\frac{13\pi^2}{5}$
 - (D) $c_3 = \frac{5\pi}{2}$.
 - (E) None of the above is true.