博碩士論文 110323002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.15.15.91
姓名 袁寧袖(Ning-Hsiu Yuan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多層堆疊氮化鋁壓電薄膜之應力梯度與變形行為研究
(Stress Gradient and Deformation Behavior of Multilayer Stacked AlN Piezoelectric Films)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 近年來,由於微機電系統(Micro Electro Mechanical Systems, MEMS)在各種應用中表現出色,因此對MEMS元件興趣日益增加,MEMS元件通常由多層沉積的薄膜以及不同材料(如矽、金屬、陶瓷材料等)而組成,其中一種設計即為氮化鋁(AlN)材料組成一種由兩層AlN夾在金屬電極之間的雙向性結構,在這種不同材料的堆疊過程中,其中殘留應力在微觀尺度中最為顯著影響製造的元件的性能和可靠性來源之一。因此,在晶圓級別上評估和調節殘留應力在活性層分佈和變化非常重要,也是評估現代MEMS元件性能的關鍵之一。本文研究了物理氣相沉積法製造薄膜過程中產生的殘留應力的原因,介紹了減少殘留應力的可能途徑及表徵殘留應力的技術,並透過有限元素分析不同MEMS結構在各種製造過程中產生的殘留應力對其特性的影響。透過有限元素的分析可以了解MEMS的多種物理場相關的技術領域知識,並提供了半導體製造過程中獲得更好地設計的參考依據。
摘要(英) In recent years, there has been a growing interest in Micro Electro Mechanical Systems (MEMS) due to their remarkable performance across various applications. MEMS devices are typically comprised of multiple layers of deposited thin films and various materials, including silicon, metals, ceramics, and more. One specific design utilizes aluminum nitride (AlN) material to create a bidirectional structure with two AlN layers sandwiched between metal electrodes. During the stacking process of these different materials, residual stress emerges as a significant factor that can significantly impact the performance and reliability of microscale manufactured components. Therefore, it is crucial to evaluate and regulate the residual stress at the wafer level to assess its distribution and variations within the active layer. This assessment is key to evaluating the performance of modern MEMS devices. This study focuses on investigating the causes of residual stress generated during the physical vapor deposition (PVD) process for thin film fabrication. It introduces potential approaches to mitigate residual stress and techniques for characterizing it. Finite element analysis is employed to examine the impact of residual stress on the characteristics of different MEMS structures during various manufacturing processes. Through finite element analysis, a deeper understanding of the various physical field-related aspects of MEMS is gained, providing valuable insights for optimizing designs in semiconductor manufacturing processes.
關鍵字(中) ★ 殘留應力
★ 應力梯度
★ 微機電系統
關鍵字(英) ★ residual stress
★ stress gradient
★ MEMS
論文目次 中文摘要 ............................................................................................................ i
Abstract .............................................................................................................. ii
致謝 .................................................................................................................. iii
圖目錄 .............................................................................................................. vi
表目錄 ............................................................................................................ viii
第一章 緒論...................................................................................................... 1
1-1 前言 ............................................................................................................. 1
1-2 研究動機與目的 ......................................................................................... 2
第二章 文獻整理與基本回顧 .......................................................................... 4
2-1 薄膜沉積 .................................................................................................... 4
2-1-1 薄膜沉積原理.......................................................................................................... 4
2-1-2 物理氣相沉積法(PVD) ........................................................................................... 5
2-2 電漿簡介 .................................................................................................... 8
2-2-1 電漿形成理論.......................................................................................................... 8
2-2-2 磁場中帶電粒子的運動........................................................................................ 11
2-3 殘留應力種類與成因 ............................................................................... 13
2-4 氮化鋁(Aluminum Nitride,AlN)薄膜介紹............................................. 15
第三章 研究架構與模擬方法 ........................................................................ 17
3-1 研究架構 ................................................................................................... 17
3-2 拉曼散射原理 ........................................................................................... 18
3-2-1 顯微拉曼光譜儀(Micro Raman) ........................................................................... 19
v
3-3 有限元素模擬分析 .................................................................................... 23
3-3-1 有限元素法基本概念............................................................................................. 23
3-3-2 COMSOL 有限元素分析軟體 ............................................................................... 24
3-3-3 邊界與參數設定..................................................................................................... 26
3-3-5 元件幾何結構變化................................................................................................ 32
第四章 結果與討論 ........................................................................................ 34
4-1 活性層厚度對撓度模擬結果 .................................................................... 35
4-2 驅動電壓對撓度模擬結果 ........................................................................ 37
4-4 不同幾何形狀的聲壓級 ............................................................................ 38
第五章 結論.................................................................................................... 42
參考文獻 ......................................................................................................... 44
參考文獻 [1] Y. J. Chen, "Advantages of mems and its distinct new applications," in Advanced Materials Research, 2013, vol. 813, pp. 205-209: Trans Tech Publ.
[2] M. K. Mishra, V. Dubey, P. Mishra, and I. Khan, "MEMS technology: A review," Journal of Engineering Research and Reports, vol. 4, no. 1, pp. 1-24, 2019.
[3] M. Prasad and V. K. Khanna, "Development of MEMS acoustic sensor with microtunnel for high SPL measurement," IEEE Transactions on Industrial Electronics, vol. 69, no. 3, pp. 3142-3150, 2021.
[4] A. Pandey et al., "Growth and evolution of residual stress of AlN films on silicon (100) wafer," Materials Science in Semiconductor Processing, vol. 52, pp. 16-23, 2016.
[5] A. Pandey, S. Dutta, R. Prakash, R. Raman, A. K. Kapoor, and D. Kaur, "Growth and comparison of residual stress of AlN films on silicon (100),(110) and (111) substrates," Journal of Electronic Materials, vol. 47, pp. 1405-1413, 2018.
[6] S. Dutta and A. Pandey, "Overview of residual stress in MEMS structures: Its origin, measurement, and control," Journal of Materials Science: Materials in Electronics, vol. 32, pp. 6705-6741, 2021.
[7] T. S. Fanse, "Design and Modification of MEMS Based Micro Cantilever," arXiv preprint arXiv:2111.01890, 2021.
[8] T. Fanse, "A Numerical Analysis of a Micro-scale Piezoelectric Cantilever Beam: the Effect of Dimension Parameters on the Eigen Frequency," arXiv preprint arXiv:2109.06060, 2021.
[9] G. PG, S. A. Mastani, and V. Anitha, "MEMS Microcantilevers Sensor Modes of Operation and Transduction Principles," 2014.
[10] J. Venables, G. Spiller, and M. Hanbucken, "Nucleation and growth of thin films," Reports on progress in physics, vol. 47, no. 4, p. 399, 1984.
[11] G. Abadias et al., "Stress in thin films and coatings: Current status, challenges, and prospects," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 36, no. 2, p. 020801, 2018.
[12] S. Swann, "Magnetron sputtering," Physics in technology, vol. 19, no. 2, p. 67, 1988.
[13] R. Ghodssi and P. Lin, MEMS materials and processes handbook. Springer Science & Business Media, 2011.
[14] D. M. Mattox, Handbook of physical vapor deposition (PVD) processing. William Andrew, 2010.
[15] K. Seshan, Handbook of thin film deposition. William Andrew, 2012.
[16] A. Bogaerts, "The glow discharge: an exciting plasma!," Journal of analytical atomic spectrometry, vol. 14, no. 9, pp. 1375-1384, 1999.
[17] I. H. Hutchinson, "Principles of plasma diagnostics," Plasma Physics and Controlled Fusion, vol. 44, no. 12, pp. 2603-2603, 2002.
[18] J. A. Thornton, "Magnetron sputtering: basic physics and application to cylindrical magnetrons," Journal of Vacuum Science and Technology, vol. 15, no. 2, pp. 171-177, 1978.
[19] J. T. Gudmundsson, "Physics and technology of magnetron sputtering discharges," Plasma Sources Science and Technology, vol. 29, no. 11, p. 113001, 2020.
[20] A. Moridi, H. Ruan, L. Zhang, and M. Liu, "Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations," International Journal of Solids and Structures, vol. 50, no. 22-23, pp. 3562-3569, 2013.
[21] G. M. Rebeiz, RF MEMS: theory, design, and technology. John Wiley & Sons, 2004.
[22] W. Fang and J. Wickert, "Determining mean and gradient residual stresses in thin films using micromachined cantilevers," Journal of Micromechanics and Microengineering, vol. 6, no. 3, p. 301, 1996.
[23] S. E. Boeshore, Aluminum nitride thin films on titanium: Piezoelectric transduction on a metal substrate. University of California, Santa Barbara, 2006.
[24] V. Cimalla, J. Pezoldt, and O. Ambacher, "Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications," Journal of Physics D: Applied Physics, vol. 40, no. 20, p. S19, 2007.
[25] P. Graves and D. Gardiner, "Practical raman spectroscopy," Springer, vol. 10, pp. 978-3, 1989.
[26] D. W. Pepper and J. C. Heinrich, The finite element method: basic concepts and applications. Taylor & Francis, 2005.
[27] M. Ashby, "Multi-objective optimization in material design and selection," Acta materialia, vol. 48, no. 1, pp. 359-369, 2000.
[28] J. Huber, N. Fleck, and M. Ashby, "The selection of mechanical actuators based on performance indices," Proceedings of the Royal Society of London. Series A: Mathematical, physical and engineering sciences, vol. 453, no. 1965, pp. 2185-2205, 1997.
[29] M. F. Ashby, "Overview No. 80: On the engineering properties of materials," Acta metallurgica, vol. 37, no. 5, pp. 1273-1293, 1989.
[30] F. F. Chen, Introduction to plasma physics. Springer Science & Business Media, 2012.
[31] Q. Wang, Z. Yi, T. Ruan, Q. Xu, B. Yang, and J. Liu, "Obtaining high SPL piezoelectric MEMS speaker via a rigid-flexible vibration coupling mechanism," Journal of Microelectromechanical Systems, vol. 30, no. 5, pp. 725-732, 2021.
[32] Y. Lang, C. Liu, A. Fawzy, C. Sun, S. Gong, and M. Zhang, "Piezoelectric bimorph MEMS speakers," Nanotechnology and Precision Engineering, vol. 5, no. 3, p. 033001, 2022.
[33] K.-S. Ou, K.-S. Chen, T.-S. Yang, and S.-Y. Lee, "A novel semianalytical approach for finding pull-in voltages of micro cantilever beams subjected to electrostatic loads and residual stress gradients," Journal of microelectromechanical systems, vol. 20, no. 2, pp. 527-537, 2011.
指導教授 利定東(Ting-Tung Li) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明