參考文獻 |
1. Uddin, T. M.; Chakraborty, A. J.; Khusro, A.; Zidan, B. M. R. M.; Mitra, S.; Emran, T. B.; Dhama, K.; Ripon, M. K. H.; Gajdács, M.; Sahibzada, M. U. K.; Hossain, M. J.; Koirala, N., Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health 2021, 14 (12), 1750-1766.
2. I.K, K.; Kochhar, N.; Ghosh, A.; Shrivastava, S.; Singh Rawat, V.; Mondal Ghorai, S.; Kaur Sodhi, K.; James, A.; Kumar, M., Perspectives on systematic generation of antibiotic resistance with special emphasis on modern antibiotics. Total Environment Research Themes 2023, 8, 100068.
3. Ayoub Moubareck, C., Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. Membranes (Basel) 2020, 10 (8).
4. Hutchings, M. I.; Truman, A. W.; Wilkinson, B., Antibiotics: past, present and future. Current Opinion in Microbiology 2019, 51, 72-80.
5. Kapoor, G.; Saigal, S.; Elongavan, A., Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 2017, 33 (3), 300-305.
6. Schillaci, D.; Spanò, V.; Parrino, B.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G.; Cascioferro, S., Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J Med Chem 2017, 60 (20), 8268-8297.
7. Peterson, E.; Kaur, P., Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018, 9, 2928.
8. Martínez, J. L., Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321 (5887), 365-7.
9. Davies, J., Inactivation of antibiotics and the dissemination of resistance genes. Science 1994, 264 (5157), 375-82.
10. Canteón, R., Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clinical Microbiology and Infection 2009, 15, 20-25.
11. Zahedi, S.; Gros, M.; Petrović, M.; Balcazar, J. L.; Pijuan, M., Anaerobic treatment of swine manure under mesophilic and thermophilic temperatures: Fate of veterinary drugs and resistance genes. Science of The Total Environment 2022, 818, 151697.
12. Li, L.-G.; Zhang, T., Plasmid-mediated antibiotic resistance gene transfer under environmental stresses: Insights from laboratory-based studies. Science of The Total Environment 2023, 887, 163870.
13. Liu, S. S.; Qu, H. M.; Yang, D.; Hu, H.; Liu, W. L.; Qiu, Z. G.; Hou, A. M.; Guo, J.; Li, J. W.; Shen, Z. Q.; Jin, M., Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res 2018, 136, 131-136.
14. Bassetti, S.; Tschudin-Sutter, S.; Egli, A.; Osthoff, M., Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur J Intern Med 2022, 99, 7-12.
15. Lanckohr, C.; Bracht, H., [Antibiotic stewardship : Measures for optimizing prescription of anti-infective agents]. Anaesthesist 2018, 67 (1), 3-8.
16. Wendt, S.; Ranft, D.; de With, K.; Kern, W. V.; Salzberger, B.; Lübbert, C., [Antibiotic stewardship (ABS). Part 1: Basics]. Internist (Berl) 2020, 61 (4), 375-387.
17. Khan, S. N.; Khan, A. U., Breaking the Spell: Combating Multidrug Resistant ′Superbugs′. Front Microbiol 2016, 7, 174.
18. Elbe, S.; Roemer-Mahler, A.; Long, C., Medical countermeasures for national security: A new government role in the pharmaceuticalization of society. Social Science & Medicine 2015, 131, 263-271.
19. Jim, O. N., Tackling drug-resistant infections globally: final report and recommendations. 2016.
20. Albano, G. D.; Midiri, M.; Zerbo, S.; Matteini, E.; Passavanti, G.; Curcio, R.; Curreri, L.; Albano, S.; Argo, A.; Cadelo, M., Implementation of A Year-Long Antimicrobial Stewardship Program in A 227-Bed Community Hospital in Southern Italy. Int J Environ Res Public Health 2023, 20 (2).
21. Ding, D.; Wang, B.; Zhang, X.; Zhang, J.; Zhang, H.; Liu, X.; Gao, Z.; Yu, Z., The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicology and Environmental Safety 2023, 254, 114734.
22. Bobate, S.; Mahalle, S.; Dafale, N. A.; Bajaj, A., Emergence of environmental antibiotic resistance: Mechanism, monitoring and management. Environmental Advances 2023, 13, 100409.
23. Aarestrup, F. M.; Jensen, V. F.; Emborg, H. D.; Jacobsen, E.; Wegener, H. C., Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am J Vet Res 2010, 71 (7), 726-33.
24. Price, D., Impact of antibiotic restrictions: the physician′s perspective. Clinical Microbiology and Infection 2006, 12, 3-9.
25. Allerberger, F.; Frank, A.; Gareis, R., Antibiotic stewardship through the EU project "ABS International". Wien Klin Wochenschr 2008, 120 (9-10), 256-63.
26. Schmerold, I.; van Geijlswijk, I.; Gehring, R., European regulations on the use of antibiotics in veterinary medicine. European Journal of Pharmaceutical Sciences 2023, 189, 106473.
27. Marano, R. B. M.; Gupta, C. L.; Cozer, T.; Jurkevitch, E.; Cytryn, E., Hidden Resistome: Enrichment Reveals the Presence of Clinically Relevant Antibiotic Resistance Determinants in Treated Wastewater-Irrigated Soils. Environmental Science & Technology 2021, 55 (10), 6814-6827.
28. Chen, T.; Zhang, S.; Zhu, R.; Zhao, M.; Zhang, Y.; Wang, Y.; Liao, X.; Wu, Y.; Mi, J., Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. Science of The Total Environment 2022, 849, 157837.
29. Ghimpețeanu, O. M.; Pogurschi, E. N.; Popa, D. C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O. D.; Petcu, C. D., Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods 2022, 11 (10).
30. Van Boeckel, T. P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N. G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R., Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365 (6459).
31. Krishnasamy, V.; Otte, J.; Silbergeld, E., Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob Resist Infect Control 2015, 4, 17.
32. Gilchrist, M. J.; Greko, C.; Wallinga, D. B.; Beran, G. W.; Riley, D. G.; Thorne, P. S., The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ Health Perspect 2007, 115 (2), 313-6.
33. Mann, A.; Nehra, K.; Rana, J. S.; Dahiya, T., Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current Research in Microbial Sciences 2021, 2, 100030.
34. Sarmah, A. K.; Meyer, M. T.; Boxall, A. B., A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65 (5), 725-59.
35. Chee-Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y. F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I., Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 2009, 38 (3), 1086-108.
36. Tang, T.; Chen, Y.; Du, Y.; Yao, B.; Liu, M., Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. Journal of Hazardous Materials 2023, 441, 129870.
37. He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P., Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 2020, 3.
38. Dungan, R. S.; McKinney, C. W.; Leytem, A. B., Tracking antibiotic resistance genes in soil irrigated with dairy wastewater. Sci Total Environ 2018, 635, 1477-1483.
39. Zhou, L.; Li, S.; Li, F., Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. Environmental Research 2022, 215, 114188.
40. Tao, C.; Wei, X.; Zhang, B.; Zhao, M.; Wang, S.; Sun, Z.; Qi, D.; Sun, L.; Rajput, S. A.; Zhang, N., Heavy Metal Content in Feedstuffs and Feeds in Hubei Province, China. Journal of Food Protection 2020, 83 (5), 762-766.
41. Li, N.; Chen, J.; Liu, C.; Yang, J.; Zhu, C.; Li, H., Cu and Zn exert a greater influence on antibiotic resistance and its transfer than doxycycline in agricultural soils. Journal of Hazardous Materials 2022, 423, 127042.
42. Mazhar, S. H.; Li, X.; Rashid, A.; Su, J.; Xu, J.; Brejnrod, A. D.; Su, J.-Q.; Wu, Y.; Zhu, Y.-G.; Zhou, S. G.; Feng, R.; Rensing, C., Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Science of The Total Environment 2021, 755, 142702.
43. Zhang, N.; Juneau, P.; Huang, R.; He, Z.; Sun, B.; Zhou, J.; Liang, Y., Coexistence between antibiotic resistance genes and metal resistance genes in manure-fertilized soils. Geoderma 2021, 382, 114760.
44. Zhang, Y.; Cheng, D.; Xie, J.; Zhang, Y.; Wan, Y.; Zhang, Y.; Shi, X., Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: A meta-analysis study. Chemosphere 2022, 300, 134529.
45. Engin, A. B.; Engin, E. D.; Engin, A., Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. Environmental Toxicology and Pharmacology 2023, 98, 104081.
46. Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D. J.; Larsson, D. G. J.; Hobman, J. L., Metal Resistance and Its Association With Antibiotic Resistance. Adv Microb Physiol 2017, 70, 261-313.
47. 行政院環境保護署水質保護網 (2023,8 月 16 日)。畜牧糞尿資源化。資料
引自 https://water.epa.gov.tw/Public/CHT/Issue/hus_resources.aspx.
48. Gou, M.; Hu, H. W.; Zhang, Y. J.; Wang, J. T.; Hayden, H.; Tang, Y. Q.; He, J. Z., Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Sci Total Environ 2018, 612, 1300-1310.
49. Ahmed, I.; Zhang, Y.; Sun, P.; Zhang, B., Co-occurrence pattern of ARGs and N-functional genes in the aerobic composting system with initial elevated temperature. Journal of Environmental Management 2023, 343, 118073.
50. Tang, Q.; Sui, Q.; Wei, Y.; Shen, P.; Zhang, J., Swine-manure composts induce the enrichment of antibiotic-resistant bacteria but not antibiotic resistance genes in soils. Journal of Environmental Management 2023, 345, 118707.
51. Zhang, K.; Wang, T.; Chen, J.; Guo, J.; Luo, H.; Chen, W.; Mo, Y.; Wei, Z.; Huang, X., The reduction and fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in microbial fuel cell (MFC) during treatment of livestock wastewater. Journal of Contaminant Hydrology 2022, 247, 103981.
52. Gao, W.; Zhi, S.; Chang, C.-C.; Zou, S.; Zhang, K., Different rapid startups for high-solid anaerobic digestion treating pig manure: Metagenomic insights into antibiotic resistance genes fate and microbial metabolic pathway. Environmental Research 2023, 231, 116038.
53. 陳世宗, 畜牧廢水變黃金 台中輔導8畜牧業「沼液沼渣」水稻施肥。工商時報。取自:https://ctee.com.tw/livenews/ch/chinatimes/20180501002096-260405. 2018.
54. 全國畜牧糞尿資源化網站 (2023,8月 16 日)。畜牧資源化推動成果。資料
引自 https://epafarm.epa.gov.tw.
55. Riaz, L.; Wang, Q.; Yang, Q.; Li, X.; Yuan, W., Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Sci Total Environ 2020, 718, 137414.
56. Liu, C.; Chen, Y.; Li, X.; Zhang, Y.; Ye, J.; Huang, H.; Zhu, C., Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Environmental Pollution 2020, 258, 113652.
57. Xiao, R.; Huang, D.; Du, L.; Song, B.; Yin, L.; Chen, Y.; Gao, L.; Li, R.; Huang, H.; Zeng, G., Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks. Science of The Total Environment 2023, 869, 161855.
58. Sun, Y.; Snow, D.; Walia, H.; Li, X., Transmission Routes of the Microbiome and Resistome from Manure to Soil and Lettuce. Environmental Science & Technology 2021, 55 (16), 11102-11112.
59. Zou, Y.; Zhang, Y.; Zhou, J.; Bao, C.; Chen, M.; He, W.; Shi, X., Effects of composting pig manure at different mature stages on ARGs in different types of soil-vegetable systems. Journal of Environmental Management 2022, 321, 116042.
60. Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U., Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 2003, 43 (3), 325-35.
61. Sanz, C.; Casado, M.; Navarro-Martin, L.; Tadić, Đ.; Parera, J.; Tugues, J.; Bayona, J. M.; Piña, B., Antibiotic and antibiotic-resistant gene loads in swine slurries and their digestates: Implications for their use as fertilizers in agriculture. Environmental Research 2021, 194, 110513.
62. 林子晞(2022)。沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討。國立中央大學環工所碩士論文,桃園縣。
63. 鄭念媛(2021)。不同料源製成之市售堆肥其抗生素抗性基因含量調查。國立中央大學環工所碩士論文,桃園縣。
64. 李杰穎(2022)。季節效應對沼液沼渣中抗生素抗性基因豐度之影響。國立中央大學環工所碩士論文,桃園縣。
65. 台灣肥料股份有限公司官網 (2023,8 月 16 日)。產品資訊。資料
引自 https://www.taifer.com.tw/ProductListC003210.aspx?appname=ProductListC003210.
66. 群耕農業生技有限公司 (2023,8 月 16 日)。產品資訊。資料
引自 https://agritechtaiwan.com/zh-tw/index.php?route=merchandise/merchandise&merchandise_id=1256.
67. 鄧教毅(2018)。重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響。國立中央大學環工所碩士論文,桃園縣。
68. 張智聖(2018)。抗生素抗性菌與抗性基因在污水處理程序中的動態變化國立中央大學環工所碩士論文,桃園縣。
69. Wang, M.; Sun, Y.; Liu, P.; Sun, J.; Zhou, Q.; Xiong, W.; Zeng, Z., Fate of antimicrobial resistance genes in response to application of poultry and swine manure in simulated manure-soil microcosms and manure-pond microcosms. Environ Sci Pollut Res Int 2017, 24 (26), 20949-20958.
70. Fahrenfeld, N.; Knowlton, K.; Krometis, L. A.; Hession, W. C.; Xia, K.; Lipscomb, E.; Libuit, K.; Green, B. L.; Pruden, A., Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach. Environ Sci Technol 2014, 48 (5), 2643-50.
71. Burch, T. R.; Sadowsky, M. J.; LaPara, T. M., Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. Environ Sci Technol 2014, 48 (10), 5620-7.
72. Burch, T. R.; Sadowsky, M. J.; LaPara, T. M., Effect of Different Treatment Technologies on the Fate of Antibiotic Resistance Genes and Class 1 Integrons when Residual Municipal Wastewater Solids are Applied to Soil. Environ Sci Technol 2017, 51 (24), 14225-14232.
73. Huygens, J.; Rasschaert, G.; Heyndrickx, M.; Dewulf, J.; Van Coillie, E.; Quataert, P.; Daeseleire, E.; Becue, I., Impact of fertilization with pig or calf slurry on antibiotic residues and resistance genes in the soil. Science of The Total Environment 2022, 822, 153518.
74. Hinsinger, P.; Plassard, C.; Tang, C.; Jaillard, B., Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil 2003, 248 (1/2), 43-59.
75. Malone, Z.; Berhe, A. A.; Ryals, R., Impacts of organic matter amendments on urban soil carbon and soil quality: A meta-analysis. Journal of Cleaner Production 2023, 419, 138148.
76. Yang, J.; Wang, J.; Liao, X.; Tao, H.; Li, Y., Chain modeling for the biogeochemical nexus of cadmium in soil–rice–human health system. Environment International 2022, 167, 107424.
77. 農業知識入口網 (2009,12 月 25 日)。高汙染風險農地,源頭把關水稻鎘含量。資料
引自https://kmweb.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri_life&id=55253.
78. Jin, X.; Zhang, J.; Wang, X.; Zhang, X.; Guo, T.; Shi, C.; Su, T.; Kong, J.; Bai, Y., A deep network prediction model for heavy metal cadmium in the rice supply chain. Journal of Future Foods 2021, 1 (2), 196-202.
79. Liao, J.; Chen, Y., Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments. Reviews in Environmental Science and Bio/Technology 2018, 17.
80. Wu, J.; Guo, S.; Li, K.; Li, Z.; Xu, P.; Jones, D. L.; Wang, J.; Zou, J., Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties. Chemosphere 2023, 336, 139272.
81. Xie, W.-Y.; Yuan, S.-T.; Xu, M.-G.; Yang, X.-P.; Shen, Q.-R.; Zhang, W.-W.; Su, J.-Q.; Zhao, F.-J., Long-term effects of manure and chemical fertilizers on soil antibiotic resistome. Soil Biology and Biochemistry 2018, 122, 111-119.
82. Lu, Y.; Li, J.; Meng, J.; Zhang, J.; Zhuang, H.; Zheng, G.; Xie, W.; Ping, L.; Shan, S., Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties. Science of The Total Environment 2021, 759, 143473.
83. Wu, L.; Xiao, X.; Chen, F.; Zhang, H.; Huang, L.; Rong, L.; Zou, X., New parameters for the quantitative assessment of the proliferation of antibiotic resistance genes dynamic in the environment and its application: A case of sulfonamides and sulfonamide resistance genes. Science of The Total Environment 2020, 726, 138516.
84. Tang, X.; Lou, C.; Wang, S.; Lu, Y.; Liu, M.; Hashmi, M. Z.; Liang, X.; Li, Z.; Liao, Y.; Qin, W.; Fan, F.; Xu, J.; Brookes, P. C., Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biology and Biochemistry 2015, 90, 179-187.
85. Zhou, X.; Wang, J.; Lu, C.; Liao, Q.; Gudda, F. O.; Ling, W., Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere 2020, 255, 127006.
86. Li, T.; Li, R.; Cao, Y.; Tao, C.; Deng, X.; Ou, Y.; Liu, H.; Shen, Z.; Li, R.; Shen, Q., Soil antibiotic abatement associates with the manipulation of soil microbiome via long-term fertilizer application. Journal of Hazardous Materials 2022, 439, 129704.
87. Liu, W.; Cheng, Y.; Guo, J.; Duan, Y.; Wang, S.; Xu, Q.; Liu, M.; Xue, C.; Guo, S.; Shen, Q.; Ling, N., Long-term manure inputs induce a deep selection on agroecosystem soil antibiotic resistome. Journal of Hazardous Materials 2022, 436, 129163.
88. Che, Y.; Xia, Y.; Liu, L.; Li, A.-D.; Yang, Y.; Zhang, T., Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome 2019, 7 (1), 44.
89. Liu, Y.; Xu, Z.; Wu, X.; Gui, W.; Zhu, G., Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils. Journal of Hazardous Materials 2010, 178 (1), 462-468.
90. Mu, M.; Yang, F.; Han, B.; Tian, X.; Zhang, K., Manure application: A trigger for vertical accumulation of antibiotic resistance genes in cropland soils. Ecotoxicology and Environmental Safety 2022, 237, 113555.
91. Nesme, J.; Simonet, P., The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology 2015, 17 (4), 913-930.
92. Pu, C.; Liu, H.; Ding, G.; Sun, Y.; Yu, X.; Chen, J.; Ren, J.; Gong, X., Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. Journal of Hazardous Materials 2018, 344, 441-449.
93. Kuppusamy, S.; Venkateswarlu, K.; Megharaj, M.; Sellappa, K.; Lee, Y. B., Contamination of long-term manure-fertilized Indian paddy soils with veterinary antibiotics: Impact on bacterial communities and antibiotics resistance genes. Applied Soil Ecology 2023, 192, 105106.
94. Wang, X.; Zhang, L.; Gu, J.; Feng, Y.; He, K.; Jiang, H., Effects of soil solarization combined with manure-amended on soil ARGs and microbial communities during summer fallow. Environmental Pollution 2023, 333, 121950.
95. Zhang, Y.; Hao, X.; Thomas, B. W.; McAllister, T. A.; Workentine, M.; Jin, L.; Shi, X.; Alexander, T. W., Soil antibiotic resistance genes accumulate at different rates over four decades of manure application. Journal of Hazardous Materials 2023, 443, 130136.
96. Yang, F.; Shen, S.; Gao, W.; Ma, Y.; Han, B.; Ding, Y.; Wang, X.; Zhang, K., Deciphering discriminative antibiotic resistance genes and pathogens in agricultural soil following chemical and organic fertilizer. Journal of Environmental Management 2022, 322, 116110.
97. Leffler, D. A.; Lamont, J. T., Clostridium difficile infection. N Engl J Med 2015, 372 (16), 1539-48.
98. Chen, H.; Yuan, J.; Xu, Q.; Yang, E.; Yang, T.; Shi, L.; Liu, Z.; Yu, H.; Cao, J.; Zhou, Q.; Chen, J., Swine wastewater treatment using combined up-flow anaerobic sludge blanket and anaerobic membrane bioreactor: Performance and microbial community diversity. Bioresource Technology 2023, 373, 128606.
99. Islam, T.; Hernández, M.; Gessesse, A.; Murrell, J. C.; Øvreås, L., A Novel Moderately Thermophilic Facultative Methylotroph within the Class Alphaproteobacteria. Microorganisms 2021, 9 (3).
100. Oshiki, M.; Toyama, Y.; Suenaga, T.; Terada, A.; Kasahara, Y.; Yamaguchi, T.; Araki, N., N(2)O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N(2)O Reduction in Agricultural Soils. Microbes Environ 2022, 37 (2).
101. Avrahami, S.; Bohannan, B. J., Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Appl Environ Microbiol 2007, 73 (4), 1166-73.
102. Wang, L.; Wang, T.; Xing, Z.; Zhang, Q.; Niu, X.; Yu, Y.; Teng, Z.; Chen, J., Enhanced lignocellulose degradation and composts fertility of cattle manure and wheat straw composting by Bacillus inoculation. Journal of Environmental Chemical Engineering 2023, 11 (3), 109940.
103. Li, S.; Ondon, B. S.; Ho, S.-H.; Li, F., Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. Environmental Research 2023, 219, 115132.
104. Guo, Y.; Qiu, T.; Gao, M.; Ru, S.; Gao, H.; Wang, X., Does increasing the organic fertilizer application rate always boost the antibiotic resistance level in agricultural soils? Environmental Pollution 2023, 322, 121251.
105. 陳柏廷(2022)。施用農廢所製生物炭對於澆灌沼液沼渣農地所含抗生素抗性基因豐度之影響。國立中央大學環工所碩士論文,桃園縣。
106. 劉丞軒(2022)。探討生物炭改質對於降低澆灌沼液沼渣土壤所含抗生素抗性基因豐度之效應。國立中央大學環工所碩士論文,桃園縣。 |