參考文獻 |
Acikara, Ö. B. (2013). Ion exchange chromatography and its applications. Column chromatography, 10, 55744.
Allahyarov, E., Sandomirski, K., Egelhaaf, S. U., & Löwen, H. (2015). Crystallization seeds favour crystallization only during initial growth. Nature communications, 6(1), 1-9.
Arola, K., Van der Bruggen, B., Mänttäri, M., & Kallioinen, M. (2019). Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Critical Reviews in Environmental Science and Technology, 49(22), 2049-2116. doi:10.1080/10643389.2019.1594519
Bachtiar, Y. F. R. (2019). Study of struvite crystallization from fertilizer industry wastewater by using fluidized bed reactor. Paper presented at the MATEC Web of Conferences.
Bello, M. M., Abdul Raman, A. A., & Purushothaman, M. (2017). Applications of fluidized bed reactors in wastewater treatment – A review of the major design and operational parameters. Journal of Cleaner Production, 141, 1492-1514. doi:https://doi.org/10.1016/j.jclepro.2016.09.148
Bhuiyan, M., Mavinic, D., & Koch, F. (2008). Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach. Water Science and Technology, 57(2), 175-181.
Caddarao, P. S., Garcia-Segura, S., Ballesteros, F. C., Huang, Y.-H., & Lu, M.-C. (2018). Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization. Journal of the Taiwan Institute of Chemical Engineers, 83, 124-132. doi:https://doi.org/10.1016/j.jtice.2017.12.009
Chen, M., & Graedel, T. E. (2016). A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Global Environmental Change, 36, 139-152. doi:https://doi.org/10.1016/j.gloenvcha.2015.12.005
Chesters, S., Del Vigo, F., & Darton, E. (2007). Theoretical and practical experience of calcium phosphate inhibition in RO waters. Paper presented at the IDA world congress on Desalination and Water Reuse, Maspalomas, Gran Canaria, Spain.
Cichy, B., Kużdżał, E., & Krztoń, H. (2019). Phosphorus recovery from acidic wastewater by hydroxyapatite precipitation. Journal of Environmental Management, 232, 421-427. doi:https://doi.org/10.1016/j.jenvman.2018.11.072
Cordell, D. (2010). The Story of Phosphorus: Sustainability implications of global phosphorus scarcity for food security.
Dai, H., Lu, X., Peng, Y., Yang, Z., & Zhsssu, H. (2017). Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater. Environmental Science and Pollution Research, 24, 5791-5799.
Dai, H., Lu, X., Peng, Y., Zou, H., & Shi, J. (2016). An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere, 165, 211-220. doi:https://doi.org/10.1016/j.chemosphere.2016.09.001
Diener, M. (2020). New ways for an old cation. Pflügers Archiv-European Journal of Physiology, 472(6), 669-670.
Ha, T.-H., Mahasti, N. N., Lin, C.-S., Lu, M.-C., & Huang, Y.-H. (2023a). Enhanced struvite (MgNH4PO4· 6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855.
Ha, T.-H., Mahasti, N. N. N., Lin, C.-S., Lu, M.-C., & Huang, Y.-H. (2023b). Enhanced struvite (MgNH4PO4·6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855. doi:https://doi.org/10.1016/j.jwpe.2023.103855
Ha, T.-H., Mahasti, N. N. N., Lu, M.-C., & Huang, Y.-H. (2022). Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Separation and Purification Technology, 303, 122192. doi:https://doi.org/10.1016/j.seppur.2022.122192
Ha, T.-H., Mahasti, N. N. N., Lu, M.-C., & Huang, Y.-H. (2023). Ammonium-nitrogen recovery as struvite from swine wastewater using various magnesium sources. Separation and Purification Technology, 308, 122870. doi:https://doi.org/10.1016/j.seppur.2022.122870
Hadi, Z., Hekmat, N., & Soltanolkottabi, F. (2022). Effect of hydroxyapatite on physical, mechanical, and morphological properties of starch-based bio-nanocomposite films. Composites and Advanced Materials, 31,
doi: https://doi.org/10.1177/26349833221087755
Han, L.-J., Li, J.-S., Xue, Q., Guo, M.-Z., Wang, P., & Poon, C. S. (2022). Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings. Construction and Building Materials, 314, 125577. doi:https://doi.org/10.1016/j.conbuildmat.2021.125577
Harris, W. G., Wilkie, A. C., Cao, X., & Sirengo, R. (2008). Bench-scale recovery of phosphorus from flushed dairy manure wastewater. Bioresource technology, 99(8), 3036-3043. doi:https://doi.org/10.1016/j.biortech.2007.06.065
Hing, K. A., Best, S. M., & Bonfield, W. (1999). Characterization of porous hydroxyapatite. Journal of Materials Science: Materials in Medicine, 10(3), 135-145. doi:10.1023/A:1008929305897
Hu, L., Yu, J., Luo, H., Wang, H., Xu, P., & Zhang, Y. (2020). Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation. Chemical Engineering Journal, 382, 123001. doi:https://doi.org/10.1016/j.cej.2019.123001
Huang, H., Zhang, D., Wang, W., Li, B., Zhao, N., Li, J., & Dai, J. (2019). Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources. Science of the total environment, 655, 211-219. doi:https://doi.org/10.1016/j.scitotenv.2018.11.259
Inglezakis, V., & Poulopoulos, S. (2006). Adsorption, ion exchange and catalysis (Vol. 3): Elsevier.
Kabdaszli, I., Parsons, S. A., & Tünaya, O. (2006). Effect of major ions on induction time of struvite precipitation. Croatica chemica acta, 79(2), 243-251.
Kim, D., Min, K. J., Lee, K., Yu, M. S., & Park, K. Y. (2017). Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environmental Engineering Research, 22(1), 12-18.
Kovrlija, I., Locs, J., & Loca, D. (2021). Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomaterialia, 135, 27-47. doi:https://doi.org/10.1016/j.actbio.2021.08.021
Kumari, S., Jose, S., Tyagi, M., & Jagadevan, S. (2020). A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. Journal of Cleaner Production, 254, 120037. doi:https://doi.org/10.1016/j.jclepro.2020.120037
Lacson, C. F. Z., Lu, M.-C., & Huang, Y.-H. (2021). Chemical precipitation at extreme fluoride concentration and potential recovery of CaF2 particles by fluidized-bed homogenous crystallization process. Chemical Engineering Journal, 415, 128917.
Lahav, O., Telzhensky, M., Zewuhn, A., Gendel, Y., Gerth, J., Calmano, W., & Birnhack, L. (2013). Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source. Separation and Purification Technology, 108, 103-110. doi:https://doi.org/10.1016/j.seppur.2013.02.002
Langenfeld, N. J., Kusuma, P., Wallentine, T., Criddle, C. S., Seefeldt, L. C., & Bugbee, B. (2021). Optimizing Nitrogen Fixation and Recycling for Food Production in Regenerative Life Support Systems. Frontiers in Astronomy and Space Sciences, 8, 105.
Le, V.-G., Vo, D.-V. N., Nguyen, N.-H., Shih, Y.-J., Vu, C.-T., Liao, C.-H., & Huang, Y.-H. (2021). Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(3), 105019. doi:https://doi.org/10.1016/j.jece.2020.105019
Le, V.-G., Vu, C.-T., Shih, Y.-J., Bui, X.-T., Liao, C.-H., & Huang, Y.-H. (2020). Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chemical Engineering Journal, 384, 123282. doi:https://doi.org/10.1016/j.cej.2019.123282
Le, V. G., Vo, D. V. N., Vu, C. T., Bui, X. T., Shih, Y. J., & Huang, Y. H. (2020). Applying a novel sequential double-column fluidized bed crystallization process to the recovery of nitrogen, phosphorus, and potassium from swine wastewater. ACS ES&T Water, 1(3), 707-718.
Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254. doi:https://doi.org/10.1016/j.jenvman.2019.07.025
Liu, X., & Wang, J. (2019). Impact of calcium on struvite crystallization in the wastewater and its competition with magnesium. Chemical Engineering Journal, 378, 122121. doi:https://doi.org/10.1016/j.cej.2019.122121
Liu, X., Wen, G., Hu, Z., & Wang, J. (2018). Coupling effects of pH and Mg/P ratio on P recovery from anaerobic digester supernatant by struvite formation. Journal of Cleaner Production, 198, 633-641. doi:https://doi.org/10.1016/j.jclepro.2018.07.073
Liu, Z.-G., Min, X.-B., Feng, F., Tang, X., Li, W.-C., Peng, C., Tang, C.-J. (2021). Development and simulation of a struvite crystallization fluidized bed reactor with enhanced external recirculation for phosphorous and ammonium recovery. Science of the total environment, 760, 144311. doi:https://doi.org/10.1016/j.scitotenv.2020.144311
Lu, B., Xu, J., Zhang, M., Pang, W., & Xie, L. (2017). Phosphorus removal and recovery from wastewater by highly efficient struvite crystallization in an improved fluidized bed reactor. Korean Journal of Chemical Engineering, 34(11), 2879-2885. doi:10.1007/s11814-017-0203-1
Macha, I., Boonyang, U., Cazalbou, S., Ben-Nissan, B., Charvillat, C., Oktar, F., & Grossin, D. (2015). Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate. JOUrnal of the Australian Ceramic Society, 51, 149-159.
Montag, D., Gethke, K., & Pinnekamp, J. (2007). A feasible approach of integrating phosphate recovery as struvite at waste water treatment plants. Paper presented at the Proceedings of the IWA Specialist Conference: Moncton, New Brunswick, Canada, June.
Moulessehoul, A., Gallart-Mateu, D., Harrache, D., Djaroud, S., de la Guardia, M., & Kameche, M. (2017). Conductimetric study of struvite crystallization in water as a function of pH. Journal of Crystal Growth, 471, 42-52. doi:https://doi.org/10.1016/j.jcrysgro.2017.05.011
Moustafa, Y. M., & Morsi, R. E. (2013). Ion exchange chromatography-An overview. Column chromatography.
NuReSys. (2021). Retrieved from http://www.nuresys-p.be/
Ostara Nutrient Recovery Technologies Inc. (2021). Retrieved from https://ostara.com/
Paques B.V. (2021). Retrieved from https://en.paques.nl/
Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781.
Pérez-González, A., Urtiaga, A. M., Ibáñez, R., & Ortiz, I. (2012). State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Research, 46(2), 267-283. doi:https://doi.org/10.1016/j.watres.2011.10.046
Qiu, L., Shi, L., Liu, Z., Xie, K., Wang, J., Zhang, S., . . . Lu, L. (2017). Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate. Ultrasonics Sonochemistry, 36, 123-128. doi:https://doi.org/10.1016/j.ultsonch.2016.11.019
Rahaman, M. S., Mavinic, D. S., Meikleham, A., & Ellis, N. (2014). Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Water Research, 51, 1-10. doi:https://doi.org/10.1016/j.watres.2013.11.048
Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 7(1), 139-155. doi:https://doi.org/10.1016/j.arabjc.2013.10.007
RoyalHaskoningDHV. ((2021). Retrieved from https://global.royalhaskoningdhv.com/
Sakthivel, S. R., Tilley, E., & Udert, K. M. (2012). Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Science of the total environment, 419, 68-75.
Shaddel, S., Bakhtiary-Davijany, H., Kabbe, C., Dadgar, F., & Osterhus, S. W. (2019). Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies. Sustainability, 11(12). doi:10.3390/su11123435
Shaddel, S., Grini, T., Ucar, S., Azrague, K., Andreassen, J.-P., & Østerhus, S. W. (2020). Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality. Water Research, 173, 115572.
Shaddel, S., Ucar, S., Andreassen, J.-P., & Østerhus, S. W. (2019). Engineering of struvite crystals by regulating supersaturation – Correlation with phosphorus recovery, crystal morphology and process efficiency. Journal of Environmental Chemical Engineering, 7(1), 102918. doi:https://doi.org/10.1016/j.jece.2019.102918
Shih, Y.-J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y.-H., & Lu, M.-C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473. doi:https://doi.org/10.1016/j.chemosphere.2017.01.088
Shih, Y.-J., Chang, H.-C., & Huang, Y.-H. (2016). Reclamation of phosphorus from aqueous solutions as alkaline earth metal phosphate in a fluidized-bed homogeneous crystallization (FBHC) process. Journal of the Taiwan Institute of Chemical Engineers, 62, 177-186. doi:https://doi.org/10.1016/j.jtice.2016.02.002
Shimamura, K., Tanaka, T., Miura, Y., & Ishikawa, H. (2003). Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system. Water Science and Technology, 48(1), 163-170.
Stramski, D., Woźniak, S. B., & Flatau, P. J. (2004). Optical properties of Asian mineral dust suspended in seawater. Limnology and Oceanography, 49(3), 749-755.
Tansel, B., Lunn, G., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504-514. doi:https://doi.org/10.1016/j.chemosphere.2017.12.004
Tao, W., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of Environmental Management, 169, 46-57. doi:https://doi.org/10.1016/j.jenvman.2015.12.006
Tarragó, E., Puig, S., Ruscalleda, M., Balaguer, M. D., & Colprim, J. (2016). Controlling struvite particles’ size using the up-flow velocity. Chemical Engineering Journal, 302, 819-827. doi:https://doi.org/10.1016/j.cej.2016.06.036
U. Tosun, G., Sakhno, Y., & Jaisi, D. P. (2021). Synthesis of Hydroxyapatite Nanoparticles from Phosphorus Recovered from Animal Wastes. ACS Sustainable Chemistry & Engineering, 9(45), 15117-15126. doi:10.1021/acssuschemeng.1c01006
Urdalen, I. (2013). Phosphorus recovery from municipal wastewater - Literature Review.
Vieillard, P., & Tardy, Y. (1984). Thermochemical Properties of Phosphates. In J. O. Nriagu & P. B. Moore (Eds.), Phosphate Minerals (pp. 171-198). Berlin, Heidelberg: Springer Berlin Heidelberg.
Wang, J., Ye, X., Zhang, Z., Ye, Z.-L., & Chen, S. (2018). Selection of cost-effective magnesium sources for fluidized struvite crystallization. Journal of Environmental Sciences, 70, 144-153. doi:https://doi.org/10.1016/j.jes.2017.11.029
Wang, X., Li, K., Qin, X., Li, M., Liu, Y., An, Y., Gong, J. (2022). Research on Mesoscale Nucleation and Growth Processes in Solution Crystallization: A Review. Crystals, 12(9), 1234. Retrieved from https://www.mdpi.com/2073-4352/12/9/1234
Wang, Y., Mou, J., Liu, X., & Chang, J. (2021). Phosphorus recovery from wastewater by struvite in response to initial nutrients concentration and nitrogen/phosphorus molar ratio. Science of the total environment, 789, 147970. doi:https://doi.org/10.1016/j.scitotenv.2021.147970
Warmadewanthi, I. D. A. A., Zulkarnain, M. A., Ikhlas, N., Kurniawan, S. B., & Abdullah, S. R. S. (2021). Struvite precipitation as pretreatment method of mature landfill leachate. Bioresource Technology Reports, 15, 100792. doi:https://doi.org/10.1016/j.biteb.2021.100792
Weber, E. M. M., Kress, T., Abergel, D., Sewsurn, S., Azaïs, T., & Kurzbach, D. (2020). Assessing the Onset of Calcium Phosphate Nucleation by Hyperpolarized Real-Time NMR. Analytical Chemistry, 92(11), 7666-7673. doi:10.1021/acs.analchem.0c00516
Wei, L., Zhang, T., Hong, T., Dong, Y., Ji, D., Luo, L., . . . Tang, Y. (2023). Revealing and quantifying the effect of cattiite coprecipitation on the purity of K-struvite in aqueous solution. Journal of Environmental Chemical Engineering, 11(3), 109764. doi:https://doi.org/10.1016/j.jece.2023.109764
Werther, J. (2000). Fluidized‐bed reactors. Ullmann′s encyclopedia of industrial chemistry.
Wu, J., Li, Y., Xu, B., Li, M., Wang, J., Shao, Y., . . . Liu, B. (2022). Effects of Physicochemical Parameters on Struvite Crystallization Based on Kinetics. International journal of environmental research and public health, 19(12), 7204. Retrieved from https://www.mdpi.com/1660-4601/19/12/7204
Ye, X., Ye, Z.-L., Lou, Y., Pan, S., Wang, X., Wang, M. K., & Chen, S. (2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 295, 16-26. doi:https://doi.org/10.1016/j.powtec.2016.03.022
Yuan, Z., Jiang, S., Sheng, H., Liu, X., Hua, H., Liu, X., & Zhang, Y. (2018). Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environmental Science & Technology, 52(5), 2438-2450. doi:10.1021/acs.est.7b03910
Zhang, D.-m., Chen, Y.-x., Jilani, G., Wu, W.-x., Liu, W.-l., & Han, Z.-y. (2012). Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants. Bioresource technology, 116, 386-395. doi:https://doi.org/10.1016/j.biortech.2012.03.107
Zhang, X., Hu, J., Spanjers, H., & van Lier, J. B. (2016). Struvite crystallization under a marine/brackish aquaculture condition. Bioresource technology, 218, 1151-1156.
Zhou, Z., Hu, D., Ren, W., Zhao, Y., Jiang, L.-M., & Wang, L. (2015). Effect of humic substances on phosphorus removal by struvite precipitation. Chemosphere, 141, 94-99. doi:https://doi.org/10.1016/j.chemosphere.2015.06.089
吳峻豪. (2013). 流體化床磷酸銨鎂結晶回收污水處理廠磷之研究.
孫耀鴻,「以海水提升流體化床磷酸銨鎂結晶之可行性研究」,國立中央大學, 民國110年
海洋保育網. (2023).取自https://iocean.oca.gov.tw/OCA_OceanConservation/
PUBLIC/Marine_WaterQuality_v2.aspx
高雄市水利局. (2022). 取自https://wrb.kcg.gov.tw/
張華強,「流體化床反應器開發均相成核與結晶之新穎除磷技術」,國立成功大學,民國100年
莊順興, 林聖諺, 孫耀鴻. (2022). 公共污水處理廠磷資源回收再利用之潛力及技術介紹. 下水道.水再生期刊, 1卷2期, 27-41.
陳怡靜,「以流體化床造粒技術回收電鍍廢水中鎳離子」,嘉南藥理大學,民國103年
楊騏彰,「流體化床磷酸鈣結晶回收污水處理廠磷之研究」,朝陽科技大學,民國101年
經濟部水利署:行政院核定11座公共污水處理再生水廠目前進度。2021年3月17日,取自https://rwrisp.wra.gov.tw/wraInfo.aspx |