博碩士論文 110326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:18.119.121.170
姓名 林聖諺(Sheng-Yan Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究
(A feasibility study of using RO rejected water to enhance the efficiency of crystallization of phosphate in fluidized bed reactor)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究★ 污泥脫水濾液無機物成分之結垢潛勢研究
★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究
★ 超音波水解生物污泥機制探討★ 生物除氮程序(MLE Process)效能評估及污泥活性探討
★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究
★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討★ 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 磷 (P) 是所有生命體中重要的營養物質之一,磷礦短缺與磷資源損失使回收磷成為關注之議題,目前已有許多成熟磷回收技術從廢水和污泥回收磷,包含沉澱法、固定床結晶法、流體化床結晶法等,台灣正發展再生水廠,逆滲透(Reverse Osmosis, RO)濃排水之處理成為問題。
首先,探討實際與合成廢水結晶磷酸鹽之粒徑分布差異,實際廢水當中含有懸浮固體,因此無法準確透過粒徑判斷初始成核之pH,本研究認定粒徑分析找尋介穩定區不適用於實際廢水。
瓶杯實驗結果顯示最高磷去除率條件為Mg/P莫耳比 1和pH 10,磷去除率為87.7%,經Visual MINTEQ預測最佳磷酸銨鎂pH條件為9.5,羥基磷灰石pH條件為10,為滿足期望產物為磷酸銨鎂,因此本研究選擇pH 9.5為最佳條件,依鎂鈣去除量選擇Mg/P莫耳比 2為最佳條件。
流體化床因子實驗之啟動策略磷去除率皆高於 86.7%,最佳磷去除率條件為HRT 5分鐘及上流速度20 m/h,磷去除率為92.2 %;最佳磷結晶率條件為HRT 10分鐘及上流速度30 m/h,磷結晶率為15.4 %,且發現磷結晶率有負值產生,其原因為絮狀物累積於突擴區,使採樣口磷濃度較進流口磷濃度高所導致,在較低的上流速度及較高的HRT下,磷結晶率累積越嚴重。
長期實驗驗證因子實驗最佳條件,證實反應時間增長仍有污泥累積之情形,因此改變流體化床操作,增加成核階段後,再調整至因子實驗最佳條件,最佳迴流口及出流口殘留磷濃度為10.31 mg/L,獲得最高磷去除率以及磷結晶率74.5 %,且可承受0.29-0.34 kg/m2 h之磷截面負荷。
XRD分析結果顯示為羥基磷灰石,水質條件Ca/Mg莫耳比為2.45之條件所造成,說明高濃度競爭離子鈣抑制磷酸銨鎂生成,粒徑0.6-0.85 mm為最多,重量占比為68.4 %,含水率為9.9 %,視密度為1.396 g/cm3。
摘要(英) Phosphorus (P) is one of the important nutrients for all forms of life. The phosphate rock depletion and the loss of phosphorus resources have made phosphorus recovery as high-profile issue. Currently, there are many mature phosphorus recovery technologies to recover phosphorus from wastewater and sludge, including chemical precipitation method , fixed bed crystallization method, fluidized bed crystallization method, and so on. Taiwan is developing reclaimed water plants, and the treatment of reverse osmosis (RO) rejected water has become a problem.
First, the difference in particle size distribution of crystallized phosphate in actual and synthetic wastewater was explored. Actual wastewater contains suspend solid, so it is impossible to accurately determine the pH of the primary nucleation through particle size. In this study, the particle size analysis cannot determine the metastable zone for actual wastewater.
The results of the jar-test experiment show that the highest phosphorus removal efficiency condition is Mg/P molar ratio 1 and pH 10, and the phosphorus removal efficiency is 87.7 %. Visual MINTEQ predicts that the optimal pH of magnesium ammonium phosphate crystallization is 9.5, and the optimal pH of the hydroxyapatite crystallization is 10. In this study, the expected product is magnesium ammonium phosphate, so the optimal condition selected pH 9.5. Mg/P molar ratio 2 as the optimal condition based on the magnesium and calcium removal quantity.
The phosphorus removal efficiency in the fluidized bed factor experiment are all higher than 86.7%. The optimal phosphorus removal efficiency condition is HRT 5 minutes and upflow velocity 20 m/h, and the phosphorus removal efficiency is 92.2%; the optimal phosphorus crystallization efficiency condition is HRT 10 minutes and The upflow velocity is 30 m/h, the phosphorus crystallization efficiency is 15.4%, and it is found that the phosphorus crystallization efficiency has a negative value. The reason is that colloid accumulates in the upper part, causing the phosphorus concentration of sample to be higher than the phosphorus concentration of inflow. The accumulation of phosphorus crystallization efficiency is significant at lower upflow velocity and higher HRT.
Long-term experiments verified the optimal conditions for the factor experiment and confirmed that sludge accumulation still occurred as the reaction time increased. Therefore, the fluidized bed operation was changed and the nucleation stage was added. Then, the optimal conditions were adjusted from the factor experiment. The residual phosphorus concentration of reflux and outflow is 10.31 mg/L, achieving the highest phosphorus removal rate and phosphorus crystallization rate of 74.5%.The system can withstand the phosphorus surface loading of 0.29-0.34 kg/m2h.
XRD analysis results show that it is hydroxyapatite, which is caused by the water quality condition of Ca/Mg molar ratio of 2.45, indicating that the high concentration of competitive ion calcium inhibits the formation of magnesium ammonium phosphate. The particle size of 0.6-0.85 mm accounts for the largest weight proportion, which is 68.4 %. The water content is 9.9 %, and the apparent density is 1.396 g/cm3.
關鍵字(中) ★ 磷酸鹽
★ RO濃排水
★ 流體化床均相結晶
★ 上流速度
★ 水力停留時間
關鍵字(英) ★ phosphate
★ RO rejected water
★ fluidized bed homogeneous crystallization
★ upflow velocity
★ hydraulic retention time
論文目次 摘要 I
Abstract II
圖摘要 IV
致謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 前言 1
1-1研究緣起 1
1-2研究目的 2
第二章 文獻回顧 3
2-1磷 3
2-1-1磷循環 3
2-1-2磷流佈 7
2-1-3磷回收技術 11
2-2 RO濃排水 13
2-2-1再生水廠RO流程 13
2-2-2 RO濃排水特性 15
2-2-3 RO濃排水處理技術 16
2-3磷酸鹽 18
2-3-1磷酸銨鎂特性 21
2-3-2羥基磷灰石特性 21
2-3-3銨源和磷源 22
2-3-4鎂源 23
2-3-5磷酸銨鎂結晶參數 23
2-3-6羥基磷灰石結晶參數 27
2-4流體化床 28
2-4-1流體化床原理 28
2-4-2結晶 28
2-4-3流體化床操作參數 29
第三章 研究方法 34
3-1研究流程及步驟 34
3-2實驗方法 36
3-2-1水質分析 36
3-2-2先期實驗 39
3-2-3流體化床實驗 43
3-2-4長期結晶實驗 46
3-3實驗設備及藥品 46
3-3-1分光光度計 48
3-3-2 ICP-OES 49
3-3-3 IC 49
3-3-4掃描式電子顯微鏡(SEM)及EDS 50
3-3-5 X光繞射儀(XRD) 50
3-3-6視密度分析(Apparent density) 51
3-3-7篩分析 51
3-3-8含水率分析 52
第四章 結果與討論 53
4-1水質分析 53
4-1-1海水 53
4-1-2污泥脫水濾液 54
4-2RO濃排水水質特性對磷酸鹽之影響評估 56
4-3先期實驗 59
4-3-1探討實際與合成廢水結晶磷酸鹽之粒徑分布差異 59
4-3-2探討以合成RO濃排水和污泥脫水濾液結晶磷酸鹽之最佳Mg/P莫耳比和pH 74
4-4流體化床實驗 81
4-4-1評估上流速度及水力停留時間對結晶之影響 81
4-4-2長期結晶實驗 90
4-4-3長期流體化床均相結晶程序實驗 93
第五章 結論與建議 110
參考文獻 113
參考文獻 Acikara, Ö. B. (2013). Ion exchange chromatography and its applications. Column chromatography, 10, 55744.
Allahyarov, E., Sandomirski, K., Egelhaaf, S. U., & Löwen, H. (2015). Crystallization seeds favour crystallization only during initial growth. Nature communications, 6(1), 1-9.
Arola, K., Van der Bruggen, B., Mänttäri, M., & Kallioinen, M. (2019). Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Critical Reviews in Environmental Science and Technology, 49(22), 2049-2116. doi:10.1080/10643389.2019.1594519
Bachtiar, Y. F. R. (2019). Study of struvite crystallization from fertilizer industry wastewater by using fluidized bed reactor. Paper presented at the MATEC Web of Conferences.
Bello, M. M., Abdul Raman, A. A., & Purushothaman, M. (2017). Applications of fluidized bed reactors in wastewater treatment – A review of the major design and operational parameters. Journal of Cleaner Production, 141, 1492-1514. doi:https://doi.org/10.1016/j.jclepro.2016.09.148
Bhuiyan, M., Mavinic, D., & Koch, F. (2008). Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach. Water Science and Technology, 57(2), 175-181.
Caddarao, P. S., Garcia-Segura, S., Ballesteros, F. C., Huang, Y.-H., & Lu, M.-C. (2018). Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization. Journal of the Taiwan Institute of Chemical Engineers, 83, 124-132. doi:https://doi.org/10.1016/j.jtice.2017.12.009
Chen, M., & Graedel, T. E. (2016). A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Global Environmental Change, 36, 139-152. doi:https://doi.org/10.1016/j.gloenvcha.2015.12.005
Chesters, S., Del Vigo, F., & Darton, E. (2007). Theoretical and practical experience of calcium phosphate inhibition in RO waters. Paper presented at the IDA world congress on Desalination and Water Reuse, Maspalomas, Gran Canaria, Spain.
Cichy, B., Kużdżał, E., & Krztoń, H. (2019). Phosphorus recovery from acidic wastewater by hydroxyapatite precipitation. Journal of Environmental Management, 232, 421-427. doi:https://doi.org/10.1016/j.jenvman.2018.11.072
Cordell, D. (2010). The Story of Phosphorus: Sustainability implications of global phosphorus scarcity for food security.
Dai, H., Lu, X., Peng, Y., Yang, Z., & Zhsssu, H. (2017). Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater. Environmental Science and Pollution Research, 24, 5791-5799.
Dai, H., Lu, X., Peng, Y., Zou, H., & Shi, J. (2016). An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere, 165, 211-220. doi:https://doi.org/10.1016/j.chemosphere.2016.09.001
Diener, M. (2020). New ways for an old cation. Pflügers Archiv-European Journal of Physiology, 472(6), 669-670.
Ha, T.-H., Mahasti, N. N., Lin, C.-S., Lu, M.-C., & Huang, Y.-H. (2023a). Enhanced struvite (MgNH4PO4· 6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855.
Ha, T.-H., Mahasti, N. N. N., Lin, C.-S., Lu, M.-C., & Huang, Y.-H. (2023b). Enhanced struvite (MgNH4PO4·6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855. doi:https://doi.org/10.1016/j.jwpe.2023.103855
Ha, T.-H., Mahasti, N. N. N., Lu, M.-C., & Huang, Y.-H. (2022). Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Separation and Purification Technology, 303, 122192. doi:https://doi.org/10.1016/j.seppur.2022.122192
Ha, T.-H., Mahasti, N. N. N., Lu, M.-C., & Huang, Y.-H. (2023). Ammonium-nitrogen recovery as struvite from swine wastewater using various magnesium sources. Separation and Purification Technology, 308, 122870. doi:https://doi.org/10.1016/j.seppur.2022.122870
Hadi, Z., Hekmat, N., & Soltanolkottabi, F. (2022). Effect of hydroxyapatite on physical, mechanical, and morphological properties of starch-based bio-nanocomposite films. Composites and Advanced Materials, 31,
doi: https://doi.org/10.1177/26349833221087755
Han, L.-J., Li, J.-S., Xue, Q., Guo, M.-Z., Wang, P., & Poon, C. S. (2022). Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings. Construction and Building Materials, 314, 125577. doi:https://doi.org/10.1016/j.conbuildmat.2021.125577
Harris, W. G., Wilkie, A. C., Cao, X., & Sirengo, R. (2008). Bench-scale recovery of phosphorus from flushed dairy manure wastewater. Bioresource technology, 99(8), 3036-3043. doi:https://doi.org/10.1016/j.biortech.2007.06.065
Hing, K. A., Best, S. M., & Bonfield, W. (1999). Characterization of porous hydroxyapatite. Journal of Materials Science: Materials in Medicine, 10(3), 135-145. doi:10.1023/A:1008929305897
Hu, L., Yu, J., Luo, H., Wang, H., Xu, P., & Zhang, Y. (2020). Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation. Chemical Engineering Journal, 382, 123001. doi:https://doi.org/10.1016/j.cej.2019.123001
Huang, H., Zhang, D., Wang, W., Li, B., Zhao, N., Li, J., & Dai, J. (2019). Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources. Science of the total environment, 655, 211-219. doi:https://doi.org/10.1016/j.scitotenv.2018.11.259
Inglezakis, V., & Poulopoulos, S. (2006). Adsorption, ion exchange and catalysis (Vol. 3): Elsevier.
Kabdaszli, I., Parsons, S. A., & Tünaya, O. (2006). Effect of major ions on induction time of struvite precipitation. Croatica chemica acta, 79(2), 243-251.
Kim, D., Min, K. J., Lee, K., Yu, M. S., & Park, K. Y. (2017). Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environmental Engineering Research, 22(1), 12-18.
Kovrlija, I., Locs, J., & Loca, D. (2021). Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomaterialia, 135, 27-47. doi:https://doi.org/10.1016/j.actbio.2021.08.021
Kumari, S., Jose, S., Tyagi, M., & Jagadevan, S. (2020). A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. Journal of Cleaner Production, 254, 120037. doi:https://doi.org/10.1016/j.jclepro.2020.120037
Lacson, C. F. Z., Lu, M.-C., & Huang, Y.-H. (2021). Chemical precipitation at extreme fluoride concentration and potential recovery of CaF2 particles by fluidized-bed homogenous crystallization process. Chemical Engineering Journal, 415, 128917.
Lahav, O., Telzhensky, M., Zewuhn, A., Gendel, Y., Gerth, J., Calmano, W., & Birnhack, L. (2013). Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source. Separation and Purification Technology, 108, 103-110. doi:https://doi.org/10.1016/j.seppur.2013.02.002
Langenfeld, N. J., Kusuma, P., Wallentine, T., Criddle, C. S., Seefeldt, L. C., & Bugbee, B. (2021). Optimizing Nitrogen Fixation and Recycling for Food Production in Regenerative Life Support Systems. Frontiers in Astronomy and Space Sciences, 8, 105.
Le, V.-G., Vo, D.-V. N., Nguyen, N.-H., Shih, Y.-J., Vu, C.-T., Liao, C.-H., & Huang, Y.-H. (2021). Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(3), 105019. doi:https://doi.org/10.1016/j.jece.2020.105019
Le, V.-G., Vu, C.-T., Shih, Y.-J., Bui, X.-T., Liao, C.-H., & Huang, Y.-H. (2020). Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chemical Engineering Journal, 384, 123282. doi:https://doi.org/10.1016/j.cej.2019.123282
Le, V. G., Vo, D. V. N., Vu, C. T., Bui, X. T., Shih, Y. J., & Huang, Y. H. (2020). Applying a novel sequential double-column fluidized bed crystallization process to the recovery of nitrogen, phosphorus, and potassium from swine wastewater. ACS ES&T Water, 1(3), 707-718.
Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254. doi:https://doi.org/10.1016/j.jenvman.2019.07.025
Liu, X., & Wang, J. (2019). Impact of calcium on struvite crystallization in the wastewater and its competition with magnesium. Chemical Engineering Journal, 378, 122121. doi:https://doi.org/10.1016/j.cej.2019.122121
Liu, X., Wen, G., Hu, Z., & Wang, J. (2018). Coupling effects of pH and Mg/P ratio on P recovery from anaerobic digester supernatant by struvite formation. Journal of Cleaner Production, 198, 633-641. doi:https://doi.org/10.1016/j.jclepro.2018.07.073
Liu, Z.-G., Min, X.-B., Feng, F., Tang, X., Li, W.-C., Peng, C., Tang, C.-J. (2021). Development and simulation of a struvite crystallization fluidized bed reactor with enhanced external recirculation for phosphorous and ammonium recovery. Science of the total environment, 760, 144311. doi:https://doi.org/10.1016/j.scitotenv.2020.144311
Lu, B., Xu, J., Zhang, M., Pang, W., & Xie, L. (2017). Phosphorus removal and recovery from wastewater by highly efficient struvite crystallization in an improved fluidized bed reactor. Korean Journal of Chemical Engineering, 34(11), 2879-2885. doi:10.1007/s11814-017-0203-1
Macha, I., Boonyang, U., Cazalbou, S., Ben-Nissan, B., Charvillat, C., Oktar, F., & Grossin, D. (2015). Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate. JOUrnal of the Australian Ceramic Society, 51, 149-159.
Montag, D., Gethke, K., & Pinnekamp, J. (2007). A feasible approach of integrating phosphate recovery as struvite at waste water treatment plants. Paper presented at the Proceedings of the IWA Specialist Conference: Moncton, New Brunswick, Canada, June.
Moulessehoul, A., Gallart-Mateu, D., Harrache, D., Djaroud, S., de la Guardia, M., & Kameche, M. (2017). Conductimetric study of struvite crystallization in water as a function of pH. Journal of Crystal Growth, 471, 42-52. doi:https://doi.org/10.1016/j.jcrysgro.2017.05.011
Moustafa, Y. M., & Morsi, R. E. (2013). Ion exchange chromatography-An overview. Column chromatography.
NuReSys. (2021). Retrieved from http://www.nuresys-p.be/
Ostara Nutrient Recovery Technologies Inc. (2021). Retrieved from https://ostara.com/
Paques B.V. (2021). Retrieved from https://en.paques.nl/
Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781.
Pérez-González, A., Urtiaga, A. M., Ibáñez, R., & Ortiz, I. (2012). State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Research, 46(2), 267-283. doi:https://doi.org/10.1016/j.watres.2011.10.046
Qiu, L., Shi, L., Liu, Z., Xie, K., Wang, J., Zhang, S., . . . Lu, L. (2017). Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate. Ultrasonics Sonochemistry, 36, 123-128. doi:https://doi.org/10.1016/j.ultsonch.2016.11.019
Rahaman, M. S., Mavinic, D. S., Meikleham, A., & Ellis, N. (2014). Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Water Research, 51, 1-10. doi:https://doi.org/10.1016/j.watres.2013.11.048
Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 7(1), 139-155. doi:https://doi.org/10.1016/j.arabjc.2013.10.007
RoyalHaskoningDHV. ((2021). Retrieved from https://global.royalhaskoningdhv.com/
Sakthivel, S. R., Tilley, E., & Udert, K. M. (2012). Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Science of the total environment, 419, 68-75.
Shaddel, S., Bakhtiary-Davijany, H., Kabbe, C., Dadgar, F., & Osterhus, S. W. (2019). Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies. Sustainability, 11(12). doi:10.3390/su11123435
Shaddel, S., Grini, T., Ucar, S., Azrague, K., Andreassen, J.-P., & Østerhus, S. W. (2020). Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality. Water Research, 173, 115572.
Shaddel, S., Ucar, S., Andreassen, J.-P., & Østerhus, S. W. (2019). Engineering of struvite crystals by regulating supersaturation – Correlation with phosphorus recovery, crystal morphology and process efficiency. Journal of Environmental Chemical Engineering, 7(1), 102918. doi:https://doi.org/10.1016/j.jece.2019.102918
Shih, Y.-J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y.-H., & Lu, M.-C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473. doi:https://doi.org/10.1016/j.chemosphere.2017.01.088
Shih, Y.-J., Chang, H.-C., & Huang, Y.-H. (2016). Reclamation of phosphorus from aqueous solutions as alkaline earth metal phosphate in a fluidized-bed homogeneous crystallization (FBHC) process. Journal of the Taiwan Institute of Chemical Engineers, 62, 177-186. doi:https://doi.org/10.1016/j.jtice.2016.02.002
Shimamura, K., Tanaka, T., Miura, Y., & Ishikawa, H. (2003). Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system. Water Science and Technology, 48(1), 163-170.
Stramski, D., Woźniak, S. B., & Flatau, P. J. (2004). Optical properties of Asian mineral dust suspended in seawater. Limnology and Oceanography, 49(3), 749-755.
Tansel, B., Lunn, G., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504-514. doi:https://doi.org/10.1016/j.chemosphere.2017.12.004
Tao, W., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of Environmental Management, 169, 46-57. doi:https://doi.org/10.1016/j.jenvman.2015.12.006
Tarragó, E., Puig, S., Ruscalleda, M., Balaguer, M. D., & Colprim, J. (2016). Controlling struvite particles’ size using the up-flow velocity. Chemical Engineering Journal, 302, 819-827. doi:https://doi.org/10.1016/j.cej.2016.06.036
U. Tosun, G., Sakhno, Y., & Jaisi, D. P. (2021). Synthesis of Hydroxyapatite Nanoparticles from Phosphorus Recovered from Animal Wastes. ACS Sustainable Chemistry & Engineering, 9(45), 15117-15126. doi:10.1021/acssuschemeng.1c01006
Urdalen, I. (2013). Phosphorus recovery from municipal wastewater - Literature Review.
Vieillard, P., & Tardy, Y. (1984). Thermochemical Properties of Phosphates. In J. O. Nriagu & P. B. Moore (Eds.), Phosphate Minerals (pp. 171-198). Berlin, Heidelberg: Springer Berlin Heidelberg.
Wang, J., Ye, X., Zhang, Z., Ye, Z.-L., & Chen, S. (2018). Selection of cost-effective magnesium sources for fluidized struvite crystallization. Journal of Environmental Sciences, 70, 144-153. doi:https://doi.org/10.1016/j.jes.2017.11.029
Wang, X., Li, K., Qin, X., Li, M., Liu, Y., An, Y., Gong, J. (2022). Research on Mesoscale Nucleation and Growth Processes in Solution Crystallization: A Review. Crystals, 12(9), 1234. Retrieved from https://www.mdpi.com/2073-4352/12/9/1234
Wang, Y., Mou, J., Liu, X., & Chang, J. (2021). Phosphorus recovery from wastewater by struvite in response to initial nutrients concentration and nitrogen/phosphorus molar ratio. Science of the total environment, 789, 147970. doi:https://doi.org/10.1016/j.scitotenv.2021.147970
Warmadewanthi, I. D. A. A., Zulkarnain, M. A., Ikhlas, N., Kurniawan, S. B., & Abdullah, S. R. S. (2021). Struvite precipitation as pretreatment method of mature landfill leachate. Bioresource Technology Reports, 15, 100792. doi:https://doi.org/10.1016/j.biteb.2021.100792
Weber, E. M. M., Kress, T., Abergel, D., Sewsurn, S., Azaïs, T., & Kurzbach, D. (2020). Assessing the Onset of Calcium Phosphate Nucleation by Hyperpolarized Real-Time NMR. Analytical Chemistry, 92(11), 7666-7673. doi:10.1021/acs.analchem.0c00516
Wei, L., Zhang, T., Hong, T., Dong, Y., Ji, D., Luo, L., . . . Tang, Y. (2023). Revealing and quantifying the effect of cattiite coprecipitation on the purity of K-struvite in aqueous solution. Journal of Environmental Chemical Engineering, 11(3), 109764. doi:https://doi.org/10.1016/j.jece.2023.109764
Werther, J. (2000). Fluidized‐bed reactors. Ullmann′s encyclopedia of industrial chemistry.
Wu, J., Li, Y., Xu, B., Li, M., Wang, J., Shao, Y., . . . Liu, B. (2022). Effects of Physicochemical Parameters on Struvite Crystallization Based on Kinetics. International journal of environmental research and public health, 19(12), 7204. Retrieved from https://www.mdpi.com/1660-4601/19/12/7204
Ye, X., Ye, Z.-L., Lou, Y., Pan, S., Wang, X., Wang, M. K., & Chen, S. (2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 295, 16-26. doi:https://doi.org/10.1016/j.powtec.2016.03.022
Yuan, Z., Jiang, S., Sheng, H., Liu, X., Hua, H., Liu, X., & Zhang, Y. (2018). Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environmental Science & Technology, 52(5), 2438-2450. doi:10.1021/acs.est.7b03910
Zhang, D.-m., Chen, Y.-x., Jilani, G., Wu, W.-x., Liu, W.-l., & Han, Z.-y. (2012). Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants. Bioresource technology, 116, 386-395. doi:https://doi.org/10.1016/j.biortech.2012.03.107
Zhang, X., Hu, J., Spanjers, H., & van Lier, J. B. (2016). Struvite crystallization under a marine/brackish aquaculture condition. Bioresource technology, 218, 1151-1156.
Zhou, Z., Hu, D., Ren, W., Zhao, Y., Jiang, L.-M., & Wang, L. (2015). Effect of humic substances on phosphorus removal by struvite precipitation. Chemosphere, 141, 94-99. doi:https://doi.org/10.1016/j.chemosphere.2015.06.089
吳峻豪. (2013). 流體化床磷酸銨鎂結晶回收污水處理廠磷之研究.
孫耀鴻,「以海水提升流體化床磷酸銨鎂結晶之可行性研究」,國立中央大學, 民國110年
海洋保育網. (2023).取自https://iocean.oca.gov.tw/OCA_OceanConservation/
PUBLIC/Marine_WaterQuality_v2.aspx
高雄市水利局. (2022). 取自https://wrb.kcg.gov.tw/
張華強,「流體化床反應器開發均相成核與結晶之新穎除磷技術」,國立成功大學,民國100年
莊順興, 林聖諺, 孫耀鴻. (2022). 公共污水處理廠磷資源回收再利用之潛力及技術介紹. 下水道.水再生期刊, 1卷2期, 27-41.
陳怡靜,「以流體化床造粒技術回收電鍍廢水中鎳離子」,嘉南藥理大學,民國103年
楊騏彰,「流體化床磷酸鈣結晶回收污水處理廠磷之研究」,朝陽科技大學,民國101年
經濟部水利署:行政院核定11座公共污水處理再生水廠目前進度。2021年3月17日,取自https://rwrisp.wra.gov.tw/wraInfo.aspx
指導教授 莊順興 審核日期 2023-12-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明