參考文獻 |
Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Engineering Journal, 9(4), 3077–3092. https://doi.org/10.1016/j.asej.2018.08.001
Acero, J. L., Benitez, F. J., Leal, A. I., Real, F. J., & Teva, F. (2010). Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials, 177(1–3), 390–398. https://doi.org/10.1016/j.jhazmat.2009.12.045
Acero, J. L., Benitez, F. J., Teva, F., & Leal, A. I. (2010). Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chemical Engineering Journal, 163(3), 264–272. https://doi.org/10.1016/j.cej.2010.07.060
Aghapour Aktij, S., Taghipour, A., Rahimpour, A., Mollahosseini, A., & Tiraferri, A. (2020). A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics, 108, 106228. https://doi.org/10.1016/j.ultras.2020.106228
Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1), 4–28. https://doi.org/10.1016/j.memsci.2007.06.002
Ang, W. L., McHugh, P. J., & Symes, M. D. (2022). Sonoelectrochemical processes for the degradation of persistent organic pollutants. Chemical Engineering Journal, 444, 136573. https://doi.org/10.1016/j.cej.2022.136573
Arefi-Oskoui S., Khataee A., Safarpour M., Orooji Y., & Vatanpour V. (2019). A review on the applications of ultrasonic technology in membrane bioreactors. Ultrasonics Sonochemistry, 58, 104633. https://doi.org/10.1016/j.ultsonch.2019.104633
Argyle, I. S., Pihlajamäki, A., & Bird, M. R. (2015). Black tea liquor ultrafiltration: Effect of ethanol pre-treatment upon fouling and cleaning characteristics. Food and Bioproducts Processing, 93, 289–297. https://doi.org/10.1016/j.fbp.2014.10.010
Asgharzadehahmadi, S., Abdul Raman, A. A., Parthasarathy, R., & Sajjadi, B. (2016). Sonochemical reactors: Review on features, advantages and limitations. Renewable and Sustainable Energy Reviews, 63, 302–314. https://doi.org/10.1016/j.rser.2016.05.030
Awaleh, M. O., Ahmed, M. M., Soubaneh, Y. D., Hoch, F. B., Bouh, S. M., & Dirieh, E. S. (2013). Wastewater reclamation using discarded reverse osmosis membranes for reuse in irrigation in Djibouti, an arid country. Water Science and Technology, 67(6), 1362–1369. https://doi.org/10.2166/wst.2013.011
Barassi, G., & Borrmann, T. (2012). N-chlorination and Orton Rearrangement of Aromatic Polyamides, Revisited. Journal of Membrane Science & Technology, 02(02). https://doi.org/10.4172/2155-9589.1000115
Chen, D., Weavers, L. K., & Walker, H. W. (2006). Ultrasonic control of ceramic membrane fouling by particles: Effect of ultrasonic factors. Ultrasonics Sonochemistry, 13(5), 379–387. https://doi.org/10.1016/j.ultsonch.2005.07.004
Chen, D., Weavers, L., Walker, H., & Lenhart, J. (2006). Ultrasonic control of ceramic membrane fouling caused by natural organic matter and silica particles. Journal of Membrane Science, 276(1–2), 135–144. https://doi.org/10.1016/j.memsci.2005.09.039
Chen, J., Dai, R., & Wang, Z. (2023). Closing the loop of membranes by recycling end-of-life membranes: Comparative life cycle assessment and economic analysis. Resources, Conservation and Recycling, 198, 107153. https://doi.org/10.1016/j.resconrec.2023.107153
Chew, C. M., Aroua, M. K., Hussain, M. A., & Ismail, W. M. Z. W. (2016). Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: An industrial scale case study. Journal of Cleaner Production, 112, 3152–3163. https://doi.org/10.1016/j.jclepro.2015.10.037
Chon, K., Kim, S. J., Moon, J., & Cho, J. (2012). Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: An autopsy study of a pilot plant. Water Research, 46(6), 1803–1816. https://doi.org/10.1016/j.watres.2011.12.062
Coutinho de Paula, E., & Amaral, M. C. S. (2017). Extending the life-cycle of reverse osmosis membranes: A review. Waste Management & Research, 35(5), 456–470. https://doi.org/10.1177/0734242X16684383
Coutinho de Paula, E., Gomes, J. C. L., & Amaral, M. C. S. (2017). Recycling of end-of-life reverse osmosis membranes by oxidative treatment: A technical evaluation. Water Science and Technology, 76(3), 605–622. https://doi.org/10.2166/wst.2017.238
Coutinho de Paula, E., Martins, P. V., Ferreira, I. C. de M., & Amaral, M. C. S. (2020). Bench and pilot scale performance assessment of recycled membrane converted from old nanofiltration membranes. Environmental Technology, 41(10), 1232–1244. https://doi.org/10.1080/09593330.2018.1526218
Coutinho de Paula, E., & Santos Amaral, M. C. (2018). Environmental and economic evaluation of end-of-life reverse osmosis membranes recycling by means of chemical conversion. Journal of Cleaner Production, 194, 85–93. https://doi.org/10.1016/j.jclepro.2018.05.099
Do, T. V. (2013). Effects of chlorine exposure on physiochemical properties and performance of polyamide membranes [Nanyang Technological University]. https://doi.org/10.32657/10356/53527
Do, V. T., Tang, C. Y., Reinhard, M., & Leckie, J. O. (2012). Effects of Chlorine Exposure Conditions on Physiochemical Properties and Performance of a Polyamide Membrane—Mechanisms and Implications. Environmental Science & Technology, 46(24), 13184–13192. https://doi.org/10.1021/es302867f
Fan, G., Li, Z., Yan, Z., Wei, Z., Xiao, Y., Chen, S., Shangguan, H., Lin, H., & Chang, H. (2020). Operating parameters optimization of combined UF/NF dual-membrane process for brackish water treatment and its application performance in municipal drinking water treatment plant. Journal of Water Process Engineering, 38, 101547. https://doi.org/10.1016/j.jwpe.2020.101547
Fathizadeh, M., Tien, H. N., Khivantsev, K., Song, Z., Zhou, F., & Yu, M. (2019). Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination, 451, 125–132. https://doi.org/10.1016/j.desal.2017.07.014
Fernández-Sempere, J., Ruiz-Beviá, F., García-Algado, P., & Salcedo-Díaz, R. (2010). Experimental study of concentration polarization in a crossflow reverse osmosis system using Digital Holographic Interferometry. Desalination, 257(1), 36–45. https://doi.org/10.1016/j.desal.2010.03.010
García-Pacheco, R., Landaburu-Aguirre, J., Molina, S., Rodríguez-Sáez, L., Teli, S. B., & García-Calvo, E. (2015). Transformation of end-of-life RO membranes into NF and UF membranes: Evaluation of membrane performance. Journal of Membrane Science, 495, 305–315. https://doi.org/10.1016/j.memsci.2015.08.025
García-Pacheco, R., Landaburu-Aguirre, J., Terrero-Rodríguez, P., Campos, E., Molina-Serrano, F., Rabadán, J., Zarzo, D., & García-Calvo, E. (2018). Validation of recycled membranes for treating brackish water at pilot scale. Desalination, 433, 199–208. https://doi.org/10.1016/j.desal.2017.12.034
Geens, J., Van der Bruggen, B., & Vandecasteele, C. (2004). Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling. Chemical Engineering Science, 59(5), 1161–1164. https://doi.org/10.1016/j.ces.2004.01.003
Giraldo Mejía, H. F., Toledo-Alarcón, J., Rodriguez, B., Rivas Cifuentes, J., Ovalle Porré, F., Loebel Haeger, M. P., Vicencio Ovalle, N., Lacoma Astudillo, C., & García, A. (2022). Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse. Chemical Engineering Research and Design, 184, 473–487. https://doi.org/10.1016/j.cherd.2022.06.031
Gohil, J. M., & Suresh, A. K. (2017). Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies. Journal of Membrane Science, 541, 108–126. https://doi.org/10.1016/j.memsci.2017.06.092
Guo, W., Ngo, H.-H., & Li, J. (2012). A mini-review on membrane fouling. Bioresource Technology, 122, 27–34. https://doi.org/10.1016/j.biortech.2012.04.089
He, X., Li, B., Wang, P., & Ma, J. (2019). Novel H2O2–MnO2 system for efficient physico-chemical cleaning of fouled ultrafiltration membranes by simultaneous generation of reactive free radicals and oxygen. Water Research, 167, 115111. https://doi.org/10.1016/j.watres.2019.115111
Holkar, C. R., Jadhav, A. J., Pinjari, D. V., & Pandit, A. B. (2019). Cavitationally Driven Transformations: A Technique of Process Intensification. Industrial & Engineering Chemistry Research, 58(15), 5797–5819. https://doi.org/10.1021/acs.iecr.8b04524
Huang, J., Luo, J., Chen, X., Feng, S., & Wan, Y. (2020). How Do Chemical Cleaning Agents Act on Polyamide Nanofiltration Membrane and Fouling Layer? Industrial & Engineering Chemistry Research, 59(40), 17653–17670. https://doi.org/10.1021/acs.iecr.0c03365
Jeżowska, A., Schipolowski, T., & Wozny, G. (2006). Influence of simple pre-treatment methods on properties of membrane material. Desalination, 189(1), 43–52. https://doi.org/10.1016/j.desal.2005.06.011
Ji, M., Luo, J., Wei, J., Woodley, J., Daugaard, A. E., & Pinelo, M. (2019). Commercial polysulfone membranes pretreated with ethanol and NaOH: Effects on permeability, selectivity and antifouling properties. Separation and Purification Technology, 219, 82–89. https://doi.org/10.1016/j.seppur.2019.03.020
Jin, W., Guo, W., Lü, X., Han, P., & Wang, Y. (2008). Effect of the Ultrasound Generated by Flat Plate Transducer Cleaning on Polluted Polyvinylidenefluoride Hollow Fiber Ultrafiltration Membrane. Chinese Journal of Chemical Engineering, 16(5), 801–804. https://doi.org/10.1016/S1004-9541(08)60159-7
Joyce Tiong, T., & Price, G. J. (2012). Ultrasound promoted reaction of Rhodamine B with sodium hypochlorite using sonochemical and dental ultrasonic instruments. Ultrasonics Sonochemistry, 19(2), 358–364. https://doi.org/10.1016/j.ultsonch.2011.06.022
Kang, G.-D., Gao, C.-J., Chen, W.-D., Jie, X.-M., Cao, Y.-M., & Yuan, Q. (2007a). Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 300(1), 165–171. https://doi.org/10.1016/j.memsci.2007.05.025
Kang, G.-D., Gao, C.-J., Chen, W.-D., Jie, X.-M., Cao, Y.-M., & Yuan, Q. (2007b). Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 300(1), 165–171. https://doi.org/10.1016/j.memsci.2007.05.025
Khoo, Y. S., Lau, W. J., Hasan, S. W., Salleh, W. N. W., & Ismail, A. F. (2021). New approach of recycling end-of-life reverse osmosis membranes via sonication for microfiltration process. Journal of Environmental Chemical Engineering, 9(6), 106731. https://doi.org/10.1016/j.jece.2021.106731
Kochkodan, V., & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 356, 187–207. https://doi.org/10.1016/j.desal.2014.09.015
Kucera, J. (2019). Biofouling of Polyamide Membranes: Fouling Mechanisms, Current Mitigation and Cleaning Strategies, and Future Prospects. Membranes, 9(9), Article 9. https://doi.org/10.3390/membranes9090111
Kulkarni, A., Mukherjee, D., & Gill, W. N. (1996). Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes. Journal of Membrane Science, 114(1), 39–50. https://doi.org/10.1016/0376-7388(95)00271-5
Kwon, Y., & Leckie, J. (2006). Hypochlorite degradation of crosslinked polyamide membranesII. Changes in hydrogen bonding behavior and performance. Journal of Membrane Science, 282(1–2), 456–464. https://doi.org/10.1016/j.memsci.2006.06.004
Kwon, Y.-N., Tang, C. Y., & Leckie, J. O. (2008). Change of chemical composition and hydrogen bonding behavior due to chlorination of crosslinked polyamide membranes. Journal of Applied Polymer Science, 108(4), 2061–2066. https://doi.org/10.1002/app.25657
Landaburu-Aguirre, J., García-Pacheco, R., Molina, S., Rodríguez-Sáez, L., Rabadán, J., & García-Calvo, E. (2016). Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination, 393, 16–30. https://doi.org/10.1016/j.desal.2016.04.002
Lang, K., Sourirajan, S., Matsuura, T., & Chowdhury, G. (1996). A study on the preparation of polyvinyl alcohol thin-film composite membranes and reverse osmosis testing. Desalination, 104(3), 185–196. https://doi.org/10.1016/0011-9164(96)00041-0
Lau, W. J., Ismail, A. F., Misdan, N., & Kassim, M. A. (2012). A recent progress in thin film composite membrane: A review. Special Issue in Honour of Professor Takeshi Matsuura on His 75th Birthday, 287, 190–199. https://doi.org/10.1016/j.desal.2011.04.004
Lawler, W., Alvarez-Gaitan, J., Leslie, G., & Le-Clech, P. (2015). Comparative life cycle assessment of end-of-life options for reverse osmosis membranes. Desalination, 357, 45–54. https://doi.org/10.1016/j.desal.2014.10.013
Lawler, W., Antony, A., Cran, M., Duke, M., Leslie, G., & Le-Clech, P. (2013). Production and characterisation of UF membranes by chemical conversion of used RO membranes. Journal of Membrane Science, 447, 203–211. https://doi.org/10.1016/j.memsci.2013.07.015
Lee, J.-H., Chung, J. Y., Chan, E. P., & Stafford, C. M. (2013). Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes. Journal of Membrane Science, 433, 72–79. https://doi.org/10.1016/j.memsci.2013.01.026
Lejarazu-Larrañaga, A., Landaburu-Aguirre, J., Senán-Salinas, J., Ortiz, J. M., & Molina, S. (2022). Thin Film Composite Polyamide Reverse Osmosis Membrane Technology towards a Circular Economy. Membranes, 12(9), Article 9. https://doi.org/10.3390/membranes12090864
Lejarazu-Larrañaga, A., Molina, S., Ortiz, J. M., Navarro, R., & García-Calvo, E. (2020a). Circular economy in membrane technology: Using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis. Journal of Membrane Science, 593, 117423. https://doi.org/10.1016/j.memsci.2019.117423
Lejarazu-Larrañaga, A., Molina, S., Ortiz, J. M., Navarro, R., & García-Calvo, E. (2020b). Circular economy in membrane technology: Using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis. Journal of Membrane Science, 593, 117423. https://doi.org/10.1016/j.memsci.2019.117423
Leong, T., Ashokkumar, M., & Kentish, S. (2011). The fundamentals of power ultrasound—A review. Acoustics Australia, 39(2), 54–63.
Li, Y.-S., Shi, L.-C., Gao, X.-F., & Huang, J.-G. (2016). Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system. Desalination, 390, 62–71. https://doi.org/10.1016/j.desal.2016.04.008
Lin, J., Tang, C. Y., Huang, C., Tang, Y. P., Ye, W., Li, J., Shen, J., Van Den Broeck, R., Van Impe, J., Volodin, A., Van Haesendonck, C., Sotto, A., Luis, P., & Van Der Bruggen, B. (2016). A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes. Journal of Membrane Science, 501, 1–14. https://doi.org/10.1016/j.memsci.2015.11.044
Liu, S., Wu, C., Hou, X., She, J., Liu, S., Lu, X., Zhang, H., & Gray, S. (2019). Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane. Journal of Membrane Science, 573, 36–45. https://doi.org/10.1016/j.memsci.2018.11.071
Liu, W., Zhang, J., Cheng, C., Tian, G., & Zhang, C. (2011). Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(II) from aqueous solutions. Chemical Engineering Journal, 175, 24–32. https://doi.org/10.1016/j.cej.2011.09.004
Louie, J. S., Pinnau, I., & Reinhard, M. (2011). Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes. Journal of Membrane Science, 367(1), 249–255. https://doi.org/10.1016/j.memsci.2010.10.067
Luján-Facundo, M. J., Mendoza-Roca, J. A., Cuartas-Uribe, B., & Álvarez-Blanco, S. (2016). Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries. Ultrasonics Sonochemistry, 33, 18–25. https://doi.org/10.1016/j.ultsonch.2016.04.018
Luo, J., Fang, Z., Smith, R. L., & Qi, X. (2015). Fundamentals of Acoustic Cavitation in Sonochemistry. In Z. Fang, Jr. Smith Richard L., & X. Qi (Eds.), Production of Biofuels and Chemicals with Ultrasound (pp. 3–33). Springer Netherlands. https://doi.org/10.1007/978-94-017-9624-8_1
Luo, J., Guo, S., Qiang, X., Hang, X., Chen, X., & Wan, Y. (2019). Sustainable utilization of cane molasses by an integrated separation process: Interplay between adsorption and nanofiltration. Separation and Purification Technology, 219, 16–24. https://doi.org/10.1016/j.seppur.2019.03.008
Luo, J., & Wan, Y. (2013). Effects of pH and salt on nanofiltration—A critical review. Journal of Membrane Science, 438, 18–28. https://doi.org/10.1016/j.memsci.2013.03.029
Madaeni, S. S., & Samieirad, S. (2010). Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination, 257(1–3), 80–86. https://doi.org/10.1016/j.desal.2010.03.002
Masselin, I., Chasseray, X., Durand-Bourlier, L., Lainé, J.-M., Syzaret, P.-Y., & Lemordant, D. (2001). Effect of sonication on polymeric membranes. Journal of Membrane Science, 181(2), 213–220. https://doi.org/10.1016/S0376-7388(00)00534-2
Moreira, V. R., Lebron, Y. A. R., Santos, L. V. de S., & Amaral, M. C. S. (2022). Low-cost recycled end-of-life reverse osmosis membranes for water treatment at the point-of-use. Journal of Cleaner Production, 362, 132495. https://doi.org/10.1016/j.jclepro.2022.132495
Naidu, G., Jeong, S., Kim, S.-J., Kim, I. S., & Vigneswaran, S. (2014). Organic fouling behavior in direct contact membrane distillation. Desalination, 347, 230–239. https://doi.org/10.1016/j.desal.2014.05.045
Naji, O., Al-juboori, R. A., Khan, A., Yadav, S., Altaee, A., Alpatova, A., Soukane, S., & Ghaffour, N. (2021). Ultrasound-assisted membrane technologies for fouling control and performance improvement: A review. Journal of Water Process Engineering, 43, 102268. https://doi.org/10.1016/j.jwpe.2021.102268
Ordóñez, R., Hermosilla, D., Merayo, N., Gascó, A., Negro, C., & Blanco, Á. (2014). Application of Multi-Barrier Membrane Filtration Technologies to Reclaim Municipal Wastewater for Industrial Use. Separation & Purification Reviews, 43(4), 263–310. https://doi.org/10.1080/15422119.2012.758638
Ould Mohamedou, E., Penate Suarez, D. B., Vince, F., Jaouen, P., & Pontie, M. (2010). New lives for old reverse osmosis (RO) membranes. Desalination, 253(1), 62–70. https://doi.org/10.1016/j.desal.2009.11.032
Ozbey-Unal, B., Omwene, P. I., Yagcioglu, M., Balcik-Canbolat, Ç., Karagunduz, A., Keskinler, B., & Dizge, N. (2020). Treatment of organized industrial zone wastewater by microfiltration/reverse osmosis membrane process for water recovery: From lab to pilot scale. Journal of Water Process Engineering, 38, 101646. https://doi.org/10.1016/j.jwpe.2020.101646
Paulusse, J. M. J., & Sijbesma, R. P. (2006). Ultrasound in polymer chemistry: Revival of an established technique. Journal of Polymer Science Part A: Polymer Chemistry, 44(19), 5445–5453. https://doi.org/10.1002/pola.21646
Powell, J., Luh, J., & Coronell, O. (2014). Bulk Chlorine Uptake by Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine—Kinetics, Mechanisms, and Modeling. Environmental Science & Technology, 48(5), 2741–2749. https://doi.org/10.1021/es4047632
Powell, J., Luh, J., & Coronell, O. (2015). Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms. Environmental Science & Technology, 49(20), 12136–12144. https://doi.org/10.1021/acs.est.5b02110
Puhan, M. R., Sutariya, B., & Karan, S. (2022). Revisiting the alkali hydrolysis of polyamide nanofiltration membranes. Journal of Membrane Science, 661, 120887. https://doi.org/10.1016/j.memsci.2022.120887
Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A., & Hilal, N. (2019). Reverse osmosis desalination: A state-of-the-art review. Desalination, 459, 59–104. https://doi.org/10.1016/j.desal.2019.02.008
Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143–164. https://doi.org/10.1016/j.desal.2018.04.007
Raval, H. D., Chauhan, V. R., Raval, A. H., & Mishra, S. (2012). Rejuvenation of discarded RO membrane for new applications. Desalination and Water Treatment, 48(1–3), 349–359. https://doi.org/10.1080/19443994.2012.704727
Raval, H. D., Samnani, M. D., & Gauswami, M. V. (2018). Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite. Applied Surface Science, 427, 37–44. https://doi.org/10.1016/j.apsusc.2017.08.132
Raval, H. D., Trivedi, J. J., Joshi, S. V., & Devmurari, C. V. (2010). Flux enhancement of thin film composite RO membrane by controlled chlorine treatment. Desalination, 250(3), 945–949. https://doi.org/10.1016/j.desal.2009.05.005
Ren, Y., Zhu, J., Feng, S., Chen, X., Luo, J., & Wan, Y. (2022). Tuning pore size and surface charge of poly(piperazinamide) nanofiltration membrane by enhanced chemical cleaning treatment. Journal of Membrane Science, 643, 120054. https://doi.org/10.1016/j.memsci.2021.120054
Rezzadori, K., Marques Penha, F., Proner, M. C., Zin, G., Cunha Petrus, J. C., Prádanos, P., Palacio, L., Hernández, A., & Di Luccio, M. (2015). Evaluation of reverse osmosis and nanofiltration membranes performance in the permeation of organic solvents. Journal of Membrane Science, 492, 478–489. https://doi.org/10.1016/j.memsci.2015.06.005
Rodríguez, J. J., Jiménez, V., Trujillo, O., & Veza, JoséM. (2002). Reuse of reverse osmosis membranes in advanced wastewater treatment. Desalination, 150(3), 219–225. https://doi.org/10.1016/S0011-9164(02)00977-3
Seah, M. Q., Lau, W. J., Goh, P. S., Tseng, H.-H., Wahab, R. A., & Ismail, A. F. (2020). Progress of Interfacial Polymerization Techniques for Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polymers, 12(12), Article 12. https://doi.org/10.3390/polym12122817
Seibel, F. I., Giubel, G. O. M., Brião, V. B., Shabani, M., & Pontié, M. (2021). End-of-life reverse osmosis membranes: Recycle procedure and its applications for the treatment of brackish and surface water. 11.
Senán-Salinas, J., García-Pacheco, R., Landaburu-Aguirre, J., & García-Calvo, E. (2019). Recycling of end-of-life reverse osmosis membranes: Comparative LCA and cost-effectiveness analysis at pilot scale. Resources, Conservation and Recycling, 150, 104423. https://doi.org/10.1016/j.resconrec.2019.104423
Sert, G., Bunani, S., Kabay, N., Egemen, Ö., Arda, M., Pek, T. Ö., & Yüksel, M. (2016). Investigation of mini pilot scale MBR-NF and MBR-RO integrated systems performance—Preliminary field tests. Journal of Water Process Engineering, 12, 72–77. https://doi.org/10.1016/j.jwpe.2016.06.008
Sewerin, T., Elshof, M. G., Matencio, S., Boerrigter, M., Yu, J., & de Grooth, J. (2021). Advances and Applications of Hollow Fiber Nanofiltration Membranes: A Review. Membranes, 11(11), Article 11. https://doi.org/10.3390/membranes11110890
Shanmuganathan, S., Vigneswaran, S., Nguyen, T. V., Loganathan, P., & Kandasamy, J. (2015). Use of nanofiltration and reverse osmosis in reclaiming micro-filtered biologically treated sewage effluent for irrigation. Desalination, 364, 119–125. https://doi.org/10.1016/j.desal.2014.12.021
Shen, J., & Schäfer, A. I. (2015). Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Science of The Total Environment, 527–528, 520–529. https://doi.org/10.1016/j.scitotenv.2015.04.037
Shenvi, S. S., Isloor, A. M., & Ismail, A. F. (2015). A review on RO membrane technology: Developments and challenges. Desalination, 368, 10–26. https://doi.org/10.1016/j.desal.2014.12.042
Shin, M. G., Park, S.-H., Kwon, S. J., Kwon, H.-E., Park, J. B., & Lee, J.-H. (2019). Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol. Journal of Membrane Science, 578, 220–229. https://doi.org/10.1016/j.memsci.2019.02.027
Siavash Madaeni, S., Mohamamdi, T., & Kazemi Moghadam, M. (2001). Chemical cleaning of reverse osmosis membranes. Desalination, 134(1), 77–82. https://doi.org/10.1016/S0011-9164(01)00117-5
Simon, A., Nghiem, L. D., Le-Clech, P., Khan, S. J., & Drewes, J. E. (2009a). Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes. Journal of Membrane Science, 340(1), 16–25. https://doi.org/10.1016/j.memsci.2009.05.005
Simon, A., Nghiem, L. D., Le-Clech, P., Khan, S. J., & Drewes, J. E. (2009b). Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes. Journal of Membrane Science, 340(1), 16–25. https://doi.org/10.1016/j.memsci.2009.05.005
Sohrabi, M. R., Madaeni, S. S., Khosravi, M., & Ghaedi, A. M. (2011). Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions. Desalination, 267(1), 93–100. https://doi.org/10.1016/j.desal.2010.09.011
Soice, N. P., Maladono, A. C., Takigawa, D. Y., Norman, A. D., Krantz, W. B., & Greenberg, A. R. (2003). Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes. Journal of Applied Polymer Science, 90(5), 1173–1184. https://doi.org/10.1002/app.12774
Souza-Chaves, B. M., Alhussaini, M. A., Felix, V., Presson, L. K., Betancourt, W. Q., Hickenbottom, K. L., & Achilli, A. (2022). Extending the life of water reuse reverse osmosis membranes using chlorination. Journal of Membrane Science, 642, 119897. https://doi.org/10.1016/j.memsci.2021.119897
Stolov, M., & Freger, V. (2019). Degradation of Polyamide Membranes Exposed to Chlorine: An Impedance Spectroscopy Study. Environmental Science & Technology, 53(5), 2618–2625. https://doi.org/10.1021/acs.est.8b04790
Suhalim, N. S., Kasim, N., Mahmoudi, E., Shamsudin, I. J., Mohammad, A. W., Mohamed Zuki, F., & Jamari, N. L.-A. (2022). Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. Nanomaterials, 12(3), Article 3. https://doi.org/10.3390/nano12030437
Tang, F., Hu, H.-Y., Sun, L.-J., Sun, Y.-X., Shi, N., & Crittenden, J. C. (2016). Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation. Water Research, 90, 329–336. https://doi.org/10.1016/j.watres.2015.12.028
Tavares, T., Tavares, J., León-Zerpa, F. A., Peñate-Suárez, B., & Ramos-Martín, A. (2022). Assessment of Processes to Increase the Useful Life and the Reuse of Reverse Osmosis Elements in Cape Verde and Macaronesia. Membranes, 12(6), 613. https://doi.org/10.3390/membranes12060613
Thombre, N. V., Gadhekar, A. P., Patwardhan, A. V., & Gogate, P. R. (2020). Ultrasound induced cleaning of polymeric nanofiltration membranes. Ultrasonics Sonochemistry, 62, 104891. https://doi.org/10.1016/j.ultsonch.2019.104891
Thompson, L. H., & Doraiswamy, L. K. (1999). Sonochemistry: Science and Engineering. Industrial & Engineering Chemistry Research, 38(4), 1215–1249. https://doi.org/10.1021/ie9804172
Tian, J., Chen, Z., Yang, Y., Liang, H., Nan, J., & Li, G. (2010). Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water. Water Research, 44(1), 59–68. https://doi.org/10.1016/j.watres.2009.08.053
Tran, T., Bolto, B., Gray, S., Hoang, M., & Ostarcevic, E. (2007). An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant. Water Research, 41(17), 3915–3923. https://doi.org/10.1016/j.watres.2007.06.008
Tsui, E. M., & Cheryan, M. (2004). Characteristics of nanofiltration membranes in aqueous ethanol. Journal of Membrane Science, 237(1), 61–69. https://doi.org/10.1016/j.memsci.2004.02.026
Ullah, M. N., Mushtaq, M. U., Adil, M. A., Sanaullah, K., Ashas, R., & Sabir, R. (2023). Application of UF and RO for power plant’s wastewater treatment and recycling for environmental sustainability. Journal of Water and Climate Change, 14(6), 1991–2006. https://doi.org/10.2166/wcc.2023.071
Vajnhandl, S., & Majcen Le Marechal, A. (2005). Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes. Dyes and Pigments, 65(2), 89–101. https://doi.org/10.1016/j.dyepig.2004.06.012
Verbeke, R., Eyley, S., Szymczyk, A., Thielemans, W., & Vankelecom, I. F. J. (2020). Controlled chlorination of polyamide reverse osmosis membranes at real scale for enhanced desalination performance. Journal of Membrane Science, 611, 118400. https://doi.org/10.1016/j.memsci.2020.118400
Verbeke, R., Gómez, V., & Vankelecom, I. F. J. (2017). Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 72, 1–15. https://doi.org/10.1016/j.progpolymsci.2017.05.003
Wang, J., Gao, X., Xu, Y., Wang, Q., Zhang, Y., Wang, X., & Gao, C. (2016). Ultrasonic-assisted acid cleaning of nanofiltration membranes fouled by inorganic scales in arsenic-rich brackish water. Desalination, 377, 172–177. https://doi.org/10.1016/j.desal.2015.09.021
Wang, J., Xing, J., Li, G., Yao, Z., Ni, Z., Wang, J., Liang, S., Zhou, Z., & Zhang, L. (2023). How to extend the lifetime of RO membrane? From the perspective of the end-of-life RO membrane autopsy. Desalination, 561, 116702. https://doi.org/10.1016/j.desal.2023.116702
Wu, D., Martin, J., Du, J. R., Zhang, Y., Lawless, D., & Feng, X. (2015). Effects of chlorine exposure on nanofiltration performance of polyamide membranes. Journal of Membrane Science, 487, 256–270. https://doi.org/10.1016/j.memsci.2015.02.021
Xie, L., He, X., Liu, Y., Cao, C., & Zhang, W. (2022). Treatment of reverse osmosis membrane by sodium hypochlorite and alcohols for enhanced performance using the swelling-fastening effect. Chemosphere, 292, 133444. https://doi.org/10.1016/j.chemosphere.2021.133444
Xu, J., Wang, Z., Wei, X., Yang, S., Wang, J., & Wang, S. (2013). The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane: New insights from the study of self-made membrane. Desalination, 313, 145–155. https://doi.org/10.1016/j.desal.2012.12.020
Xu, P., Bellona, C., & Drewes, J. E. (2010a). Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 12. https://doi.org/10.1016/j.memsci.2010.02.037
Xu, P., Bellona, C., & Drewes, J. E. (2010b). Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 353(1), 111–121. https://doi.org/10.1016/j.memsci.2010.02.037
Young, F. R. (1999). Cavitation. World Scientific.
Yusof, N. S. M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., & Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 29, 568–576. https://doi.org/10.1016/j.ultsonch.2015.06.013
Zhai, X., Meng, J., Li, R., Ni, L., & Zhang, Y. (2011). Hypochlorite treatment on thin film composite RO membrane to improve boron removal performance. Desalination, 274(1–3), 136–143. https://doi.org/10.1016/j.desal.2011.02.001
Zhang, R., Su, S., Gao, S., & Tian, J. (2021). Reconstruction of the polyamide film in nanofiltration membranes via the post-treatment with a ternary mixture of ethanol-water-NaOH: Mechanism and effect. Desalination, 519, 115317. https://doi.org/10.1016/j.desal.2021.115317
Zhang, S., Fu, F., & Chung, T.-S. (2013). Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power. Chemical Engineering Science, 87, 40–50. https://doi.org/10.1016/j.ces.2012.09.014
Zhang, Z., Fan, K., Liu, Y., & Xia, S. (2023). A review on polyester and polyester-amide thin film composite nanofiltration membranes: Synthesis, characteristics and applications. Science of The Total Environment, 858, 159922. https://doi.org/10.1016/j.scitotenv.2022.159922
Zhao, D., Qiu, L., Song, J., Liu, J., Wang, Z., Zhu, Y., & Liu, G. (2019). Efficiencies and mechanisms of chemical cleaning agents for nanofiltration membranes used in produced wastewater desalination. Science of The Total Environment, 652, 256–266. https://doi.org/10.1016/j.scitotenv.2018.10.221
Zhao, Y., Wu, K., Wang, Z., Zhao, L., & Li, S. (2000). Fouling and cleaning of membrane-a literature review. Journal of Environmental Sciences, 12(2), 241–251.
Zhao, Y., & Yuan, Q. (2006). Effect of membrane pretreatment on performance of solvent resistant nanofiltration membranes in methanol solutions. Journal of Membrane Science, 280(1–2), 195–201. https://doi.org/10.1016/j.memsci.2006.01.026
Zheng, L., Yu, D., Wang, G., Yue, Z., Zhang, C., Wang, Y., Zhang, J., Wang, J., Liang, G., & Wei, Y. (2018). Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: Membrane autopsy and fouling characterization. Journal of Membrane Science, 563, 843–856. https://doi.org/10.1016/j.memsci.2018.06.043
林智雄. (2018). 影響NF薄膜濃度極化因子之探討—離子種類、濃度及掃流速度. (碩士), 朝陽科技大學, 台中市.
經濟部水利署. (2017). 非系統再生水利用技術參考說明
經濟部水利署. (2018). 再生水用於工業用途水質基礎建議值 |