參考文獻 |
1. C. Achillas, D. Tzetzis, and M.O. Raimondo, “Alternative Production Strategies Based on the Comparison of Additive and Traditional Manufacturing Technologies,” International Journal of Production Research, Vol. 55, pp. 3497-3509, 2017.
2. T. Pereira, J. V. Kennedy, and J. Potgieter, “A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job,” Procedia Manufacturing, Vol. 30, pp. 11-18, 2019.
3. M. Al-Makky and D. Mahmoud, “The Importance of Additive Manufacturing Processes in Industrial Applications,” The International Conference on Applied Mechanics and Mechanical Engineering, Vol. 17, pp. 1-14, 2016.
4. M. Kalender, Y. Bozkurt, S. Ersoy, and S. Salman, “Product Development with Additive Manufacturing and 3D Printer Technology in Aerospace Industry,” Journal of Aeronautics and Space Technologies, Vol. 13, pp. 129-138, 2020.
5. S. M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, “An Overview of Direct Laser Deposition for Additive Manufacturing, Part I: Transport Phenomena, Modeling and Diagnostics,” Additive Manufacturing, Vol. 8, pp. 36-62, 2015.
6. T. H. Becker, P. Kumar, and U. Ramamurty, “Fracture and Fatigue in Additively Manufactured Metals,” Acta Materialia, Vol. 219, 117240, 2021.
7. Y. Kok, X. P. Tan, P. Wang, M. L. S. Nai, N. H. Loh, E. Liu, and S. B. Tor, “Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review,” Materials & Design, Vol. 139, pp. 565-586, 2018.
8. M. R. Khosravani, F. Berto, M. R. Ayatollahi, and T. Reinicke, “Fracture Behavior of Additively Manufactured Components: A Review,” Theoretical and Applied Fracture Mechanics, Vol. 109, 102763, 2020.
9. S. Afkhami, M. Dabiri, S. H. Alavi, T. Björk, and A. Salminen, “Fatigue Characteristics of Steels Manufactured by Selective Laser Melting,” International Journal of Fatigue, Vol. 122, pp. 72-83, 2019.
10. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E. A. Jägle, “Steels in Additive Manufacturing: A Review of Their Microstructure and Properties,” Materials Science and Engineering: A, Vol. 772, 138633, 2020.
11. J. K. L. Lai, C. H. Shek, and K. H. Lo, Stainless Steels: An Introduction and Their Recent Developments, Bentham Science, Beijing, China, 2015.
12. X. Zhao, Q. Wei, B. Song, Y. Liu, X. Luo, S. Wen, and Y. Shi, “Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting,” Materials and Manufacturing Processes, Vol. 30, pp. 1283-1289, 2015.
13. P. Mercelis and J. P. Kruth, “Residual Stresses in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping, Vol. 12, pp. 254-265, 2006.
14. A. Sola and A. Nouri, “Microstructural Porosity in Additive Manufacturing: The Formation and Detection of Pores in Metal Parts Fabricated by Powder Bed Fusion,” Journal of Advanced Manufacturing and Processing, Vol. 1, e10021, 2019.
15. S. Liu, Y. C. Shin, “Additive Manufacturing of Ti6Al4V Alloy: A Review,” Materials & Design, Vol. 164, 107552, 2019.
16. B. Mooney and K. I. Kourousis, “A Review of Factors Affecting the Mechanical Properties of Maraging Steel 300 Fabricated via Laser Powder Bed Fusion,” Metals, Vol. 10, 1273, 2020.
17. A. Charmi, R. Falkenberg, L. Ávila, G. Mohr, K. Sommer, A. Ulbricht, M. Sprengel, R. Saliwan Neumann, B. Skrotzki, and A. Evans, “Mechanical Anisotropy of Additively Manufactured Stainless Steel 316L: An Experimental and Numerical Study,” Materials Science and Engineering: A, Vol. 799, 140154, 2021.
18. Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W. Huang, “Microstructure and Anisotropic Tensile Behavior of Laser Additive Manufactured TC21 Titanium Alloy,” Materials Science and Engineering: A, Vol. 673, pp. 204-212, 2016.
19. P. Hartunian and M. Eshraghi, “Effect of Build Orientation on the Microstructure and Mechanical Properties of Selective Laser-Melted Ti-6Al-4V Alloy,” Journal of Manufacturing and Materials Processing, Vol.2, pp. 69, 2018.
20. G. E. Bean, T. D. McLouth, D. B. Witkin, S. D. Sitzman, P. M. Adams, and R. J. Zaldivar, “Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718,” Journal of Materials Engineering and Performance, Vol. 28, pp. 1942-1949, 2019.
21. L. Rickenbacher, T. Etter, S. Hovel, and K. Wegener, “High Temperature Material Properties of IN738LC Processed by Selective Laser Melting (SLM) Technology,” Rapid Prototyping Journal, Vol. 19, pp. 282, 2013.
22. J. Suryawanshi, K. G. Prashanth, and U. Ramamurty, “Mechanical Behavior of Selective Laser Melted 316L Stainless Steel,” Materials Science and Engineering: A, Vol. 696, pp. 113–121, 2017.
23. B. Mooney, K. Kourousis, and R. Raghavendra, “Plastic Anisotropy of Additively Manufactured Maraging Steel: Influence of the Build Orientation and Heat Treatments,” Additive Manufacturing, Vol. 25, pp. 19-31, 2019.
24. J. Suryawanshi, K. G. Prashanth, and U. Ramamurty, “Tensile, Fracture, and Fatigue Crack Growth Properties of a 3D Printed Maraging Steel through Selective Laser Melting,” Journal of Alloys and Compounds, Vol. 725, pp. 355-364, 2017.
25. C. Tan, K. Zhou, M. Kuang, W. Ma, and T. Kuang, “Microstructural Characterization and Properties of Selective Laser Melted Maraging Steel with Different Build Directions,” Science and Technology of Advanced Materials, Vol. 19, pp. 746-758, 2018.
26. J. Suryawanshi, K. G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, “Simultaneous Enhancements of Strength and Toughness in An Al-12Si Alloy Synthesized Using Selective Laser Melting,” Acta Materialia, Vol. 115, pp. 285-294, 2016.
27. J. T. O. de Menezes, E. M. Castrodeza, and R. Casati, “Effect of Build Orientation on Fracture and Tensile Behavior of A357 Al Alloy Processed by Selective Laser Melting,” Materials Science and Engineering: A, Vol. 766, 138392, 2019.
28. V. Cain, L. Thijs, J. Van Humbeeck, B. Van Hooreweder, and R. Knutsen, “Crack Propagation and Fracture Toughness of Ti6Al4V Alloy Produced by Selective Laser Melting,” Additive Manufacturing, Vol. 616, pp. 68-76, 2015.
29. L. Afroz, R. Das, M. Qian, M. Easton, and M. Brandt, “Fatigue Behaviour of Laser Powder Bed Fusion (L-PBF) Ti–6Al–4V, Al–Si–Mg and Stainless Steels: A Brief Overview,” International Journal of Fracture, Vol. 235, pp. 3-46, 2022.
30. T. Hermann Becker and D. Dimitrov, “The Achievable Mechanical Properties of SLM Produced Maraging Steel 300 Components,” Rapid Prototyping Journal, Vol. 22, pp. 487-494, 2016.
31. A. Yadollahi, M. Mahmoudi, A. Elwany, H. Doude, L. Bian, and J. C. Newman Jr, “Effects of Crack Orientation and Heat Treatment on Fatigue-Crack-Growth Behavior of AM 17-4 PH Stainless Steel,” Engineering Fracture Mechanics, Vol. 226, 106874, 2020.
32. P. D. Nezhadfar, E. Burford, K. Anderson-Wedge, B. Zhang, S. Shao, S. R. Daniewicz, and N. Shamsaei, “Fatigue Crack Growth Behavior of Additively Manufactured 17-4 PH Stainless Steel: Effects of Build Orientation and Microstructure,” International Journal of Fatigue, Vol. 123, pp. 168-179, 2019.
33. J. Kluczyński, L. Śnieżek, K. Grzelak, J. Torzewski, I. Szachogłuchowicz, M. Wachowski, and J. Łuszczek, “Crack Growth Behavior of Additively Manufactured 316L Steel—Influence of Build Orientation and Heat Treatment,” Materials, Vol. 13, 3259, 2020.
34. O. Fergani, A. Bratli Wold, F. Berto, V. Brotan, and M. Bambach, “Study of the Effect of Heat Treatment on Fatigue Crack Growth Behaviour of 316L Stainless Steel Produced by Selective Laser Melting,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 41, pp. 1102-1119, 2018.
35. P. Krakhmalev, I. Yadroitsava, G. Fredriksson, and I. Yadroitsev, “In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels,” Materials & Design, Vol. 87, pp. 380–385, 2015.
36. S. D. Nath, H. Irrinki, G. Gupta, L. Kvetkova, M. Kearns, O. Gulsoy, and S. Atre, “Microstructure-Property Relationships of 420 Stainless Steel Fabricated by Laser-Powder Bed Fusion,” Powder Technology, Vol. 343, pp. 738-746, 2019.
37. K. Saeidi, D. L. Zapata, F. Lofaj, L. Kvetkova, J. Olsen, Z. Shen, and F. Akhtar, “Ultra-High Strength Martensitic 420 Stainless Steel with High Ductility,” Additive Manufacturing, Vol. 29, 100803, 2019.
38. Y. Tian, K. Chadha, and C. Aranas, “Laser Powder Bed Fusion of Ultra-High-Strength 420 Stainless Steel: Microstructure Characterization, Texture Evolution and Mechanical Properties,” Materials Science and Engineering: A, Vol. 805, 140790, 2020.
39. S. D. Nath, A, Okello, R. Kelkar, G. Gupta, M. Kearns, and S. V. Atre, “Adapting L-PBF Process for Fine Powders: A Case Study in 420 Stainless Steel,” Materials and Manufacturing Processes, Vol. 37, pp. 1320-1331, 2022.
40. L.-C. Shen, X.-H. Yang, J.-R. Ho, P.-C. Tung, and C.-K. Lin, “Effects of Build Direction on the Mechanical Properties of a Martensitic Stainless Steel Fabricated by Selective Laser Melting,” Materials, Vol. 13, pp. 5142, 2020.
41. X.-H. Yang, C.-M. Jiang, J.-R. Ho, P.-C. Tung, and C.-K. Lin, “Effects of Laser Spot Size on the Mechanical Properties of AISI 420 Stainless Steel Fabricated by Selective Laser Melting,” Materials, Vol. 14, 4593, 2021.
42. H. Zhu, Y. Li, B. Li, Z. Zhang, and C. Qiu, “Effects of Low-Temperature Tempering on Microstructure and Properties of the Laser-Cladded AISI 420 Martensitic Stainless Steel Coating,” Coatings, Vol. 8, pp. 451, 2018.
43. M. K. Alam, M. Mehdi, R. J. Urbanic, and A. Edrisy, “Electron Backscatter Diffraction (EBSD) Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel,” Materials Characterization, Vol. 161, 110138, 2020.
44. “Standard Test Method for Tension Testing of Metallic Materials,” ASTM Standard E8/E8M-21, ASTM International, West Conshohocken, PA, USA, 2021.
45. “Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials,” ASTM Standard E399-19, ASTM International, West Conshohocken, PA, USA, 2019.
46. “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM Standard E647, ASTM International, West Conshohocken, PA, USA, 2016.
47. N. H. van Dijk, A. M. Butt, L. Zhau, J. Sietsma, S. E. Offerman, J. P. Wright, and S. van der Zwaag, “Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-ray Diffraction During Cooling,” Acta Materialia, Vol. 53, pp. 5439-5447, 2005.
48. A. Li, V. Ji, J. L. Lebrun, and G. Ingelbert, “Surface Roughness Effects on Stress Determination by the X-ray Diffraction Method,” Experimental Techniques, Vol. 19, pp. 9-11, 1995.
49. N. Saini, C. Pandey, M. M. Mahapatra, and H. K. Narang, “A Comparative Study of Ductile-Brittle Transition Behavior and Fractography of P91 and P92 Steel,” Engineering Failure Analysis, Vol. 81, pp. 245-253, 2017.
50. Y. Zhang, D. Zhan, X. Qi, and Z. Jiang, “Austenite and Precipitation in Secondary-Hardening Ultra-High-Strength Stainless Steel,” Materials Characterization, Vol. 144, pp. 393–399, 2018.
51. S.-Y. Lu, K.-F. Yao, Y.-B. Chen, M.-H. Wang, X.-Liu, and X.-Y. Ge, “The Effect of Tempering Temperature on the Microstructure and Electrochemical Properties of a 13 wt.% Cr-type Martensitic Stainless Steel,” Electrochimica Acta, Vol. 165, pp. 45–55, 2015.
52. A. Boudiaf, L. Taleb, and M. A. Belouchrani, “Experimental Analysis of the Correlation between Martensitic Transformation Plasticity and the Austenitic Grain Size in Steels,” European Journal of Mechanics-A/Solids, Vol. 30, pp. 326-335, 2011.
53. L. Yuan, D. Ponge, J. Wittig, P. Choi, J. A. Jiménez, and D. Raabe, “Nanoscale Austenite Reversion Through Partitioning, Segregation and Kinetic Freezing: Example of a Ductile 2 GPa Fe–Cr–C Steel,” Acta Materialia, Vol. 60, pp. 2790-2804, 2012.
54. G. B. Olson and M. Azrin, “Transformation Behavior of TRIP Steels,” Metallurgical Transactions A, Vol. 9, pp. 713-721, 1978.
55. J. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, “Carbon Partitioning into Austenite after Martensite Transformation,” Acta Materialia, Vol. 51, pp. 2611–2622, 2003.
56. G. Prieto W. R. Tuckart, and J. E. Perez Ipiña, “Influence of a Cryogenic Treatment on the Fracture Toughness of An AISI 420 Martensitic Stainless Steel,” Materials and Technologies, Vol. 51, pp. 591-596, 2017.
57. Y. Liang, S. Long, P. Xu, Y. Lu, Y. Jiang, Y. Liang, and M. Yang, “The Important Role of Martensite Laths to Fracture Toughness for the Ductile Fracture Controlled by the Strain in EA4T Axle Steel,” Materials Science and Engineering: A, Vol. 695, pp. 154-164, 2017.
58. M. Mokhtarishirazabad, C. Simpson, S. Kabra, G. Horne, I. Palmer I, A. Moffat, C. Truman, D. Knowles, and M. Mostafavi, “Evaluation of Fracture Toughness and Residual Stress in AISI 316L Electron Beam Welds,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 44, pp. 2015-2032, 2021.
59. X. B. Ren, Z. L. Zhang, and B. Nyhus, “Effect of Residual Stresses on Ductile Crack Growth Resistance,” Engineering Fracture Mechanics, Vol. 77, pp. 1325-1337, 2010.
60. H. Nakagawa and T. Miyazaki, “Effect of Retained Austenite on the Microstructure and Mechanical Properties of Martensitic Precipitation Hardening Stainless Steel,” Journal of materials science, Vol. 34, pp. 3901–3908, 1999.
61. M. J. Paul, Y. Muniandy, J. J. Kruzic, U. Ramamurty, and B. Gludovatz, “Effect of Heat Treatment on the Strength and Fracture Resistance of a Laser Powder Bed Fusion-Processed 18Ni-300 Maraging Steel,” Materials Science and Engineering: A, Vol. 844, 143167, 2022.
62. J. Yamabe and M. Kobayashi, “Effect of Hardness and Stress Ratio on Threshold Stress Intensity Factor Ranges for Small Cracks and Long Cracks in Spheroidal Cast Irons,” Journal of Solid Mechanics and Materials Engineering, Vol. 1, pp. 667-678, 2007.
63. Q. Sun, K. Li, X. Li, S. S. Rui, Z. Cai, and J. Pan, “Near-Threshold Fatigue Crack Growth Behavior of 10% Cr Martensitic Steel Welded Joint with 9% Cr Weld Metal in High Temperature Air,” International Journal of Fatigue, Vol. 137, 105650, 2020.
64. A. Riemer, S. Leuders, M. Thöne, H. A. Richard, T. Tröster, and T. Niendorf, “On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting,” Engineering Fracture Mechanics, Vol. 120, pp. 15-25, 2014.
65. J. R. Poulin, V. Brailovski, and P. Terriault, “Long Fatigue Crack Propagation Behavior of Inconel 625 Processed by Laser Powder Bed Fusion: Influence of Build Orientation and Post-processing Conditions,” International Journal of Fatigue, Vol. 116, pp. 634-647, 2018.
66. N. E. Dowling, S. L. Kampe, and M. V. Kral, “Fatigue Crack Growth,” Chapter 11 in Mechanical Behavior of Materials-Engineering Methods for Deformation, Fracture, and Fatigue, Fifth Edition, Pearson, Harlow, United Kingdom, 2019.
67. M. Petersmann, T. Antretter, G. Cailletaud, A. Sannikov, U. Ehlenbröker, and F. D. Fischer, “Unification of the Non-Linear Geometric Transformation Theory of Martensite and Crystal Plasticity - Application to Dislocated Lath Martensite in Steels,” International journal of plasticity, Vol. 119, pp. 140-155, 2019.
68. S. Ueki, Y. Mine, and K. Takashima, “Microstructure-Sensitive Fatigue Crack Growth in Lath Martensite of Low Carbon Steel,” Materials Science and Engineering: A, Vol. 773, 138830, 2020.
69. K. Okada, A. Shibata, Y. Takeda, and N. Tsuji, “Crystallographic Analysis of Fatigue Fracture Initiation in 8Ni-0.1C Martensitic Steel,” International Journal of Fatigue, Vol. 143, 105921, 2021.
70. X. Gong, P. Marmy, L. Qin, B. Verlinden, M. Wevers, and M. Seefeldt, “Effect of Liquid Metal Embrittlement on Low Cycle Fatigue Properties and Fatigue Crack Propagation Behavior of a Modified 9Cr–1Mo Ferritic–Martensitic Steel in an Oxygen-Controlled Lead–bismuth Eutectic Environment at 350 °C,” Materials Science and Engineering: A, Vol. 618, pp. 406-415, 2014.
71. S. Li, G. Zhu, and Y. Kang, “Effect of Substructure on Mechanical Properties and Fracture Behavior of Lath Martensite in 0.1C–1.1Si–1.7Mn steel,” Journal of Alloys and Compounds, Vol. 675, pp. 104-115, 2016. |