博碩士論文 110323117 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.119.112.208
姓名 黃子賢(Zhu-Heang Ng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 圓柱齒輪感應硬化特徵預測之研究
(A Study on Feature Prediction of Cylindrical Gear Induction Hardening)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 電動車齒輪箱之剛-柔耦合動力學模型建立及等效輻射聲功率分析★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究
★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-30以後開放)
摘要(中) 齒輪製造工序一般從鋼胚加工出齒型,接著進行感應硬化熱處理
以提升齒部強度,最終再進行精加工以達到齒輪精準度。為了響應節
能減碳,省略最終進行精加工工序以達到簡化齒輪製造工序之目的,
針對齒輪於感應硬化熱處理後之特徵進行預測成為實現此目的之重
要工具。本研究將提出應用均勻實驗設計法於圓柱齒輪感應淬火實驗
規劃,並透過徑向基函數建立預測模型以預測齒輪於感應硬化熱處理
後之特徵,且推導出各目標預測方程式。此外,本研究利用有限元素
法模擬齒輪感應淬火,提出使用非均勻磁場模型以獲得更準確的結
果。隨後,透過粒子群最佳化方法求解特定齒輪特徵之加熱控制因數
最佳解。最後,應用最佳解於有限元素模擬出非均勻磁場模型之模擬
結果,並與預測模型預測結果進行比較以驗證非均勻磁場模型之正確
性。同時,透過非均勻磁場模型與均勻磁場模型之模擬結果與預測模
型預測結果進行比較,以驗證使用非均勻磁場模型之必要性。總結,
本研究提出預測模型較適用於預測齒輪感應硬化熱處理特徵之工具。
摘要(英) Gear manufacturing processes typically begin with shaping the teeth from a steel blank, followed by induction hardening to enhance tooth strength. Subsequently, precision machining is performed to achieve gear accuracy. In response to energy conservation and carbon reduction, the final precision machining step is omitted, simplifying the gear
manufacturing process. To achieve this goal, predicting the characteristics of gears after induction hardening becomes a crucial tool. This study proposes the application of uniform experimental design for experimental planning of cylindrical gear induction hardening. A predictive model is established using radial basis functions to anticipate gear characteristics after induction hardening, with the derivation of respective target prediction equations. Additionally, finite element analysis is employed to simulate gear induction hardening, advocating the use of a non-uniform magnetic field model for enhanced accuracy. Subsequently, particle swarm optimization is utilized to determine optimal heating control factors for specific gear features. Finally, applying the optimal solution to finite
element simulation produces results for the non-uniform magnetic field model, validated against predictive model outcomes. A comparison between non-uniform and uniform magnetic field models and predictive model results validates the necessity of employing a non-uniform magnetic field model. In conclusion, this study proposes that the predictive model is more suitable for forecasting characteristics in the induction.
關鍵字(中) ★ 齒輪感應硬化熱處理
★ 齒輪特徵預測
★ 均勻實驗設計法
★ 有 限元素法
★ 徑向基函數
★ 粒子群最佳化
關鍵字(英) ★ Gear induction hardening
★ Gear feature prediction
★ Uniform design experiment method
★ Finite element analysis
★ Radial basis functions
★ Particle swarm optimization
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 xi
符號對照表 xiii
第1章 緒論 xviii
1-1 研究背景 xviii
1-2 研究動機與目的 xx
1-3 文獻回顧 1
1-4 論文架構 2
第2章 齒輪熱處理之基礎理論 4
2-1 齒輪嚙合原理 4
2-2 感應加熱之基本原理 5
2-2-1 電磁感應原理 5
2-2-2 磁滯損失、渦電流損失與集膚效應 8
2-2-3 鄰近效應與邊界效應 12
2-3 淬火 14
2-4 金屬相變化 17
2-4-1 沃斯田鐵 18
2-4-2 肥粒鐵 19
2-4-3 變韌鐵 19
2-4-4 波來鐵 20
2-4-5 麻田散鐵 21
2-5 綜合歸納 22
第3章 齒輪熱處理實驗規劃與預測模型建立 23
3-1 均勻實驗設計法 23
3-2 應用均勻設計法於實驗規劃 25
3-3 齒輪與感應線圈之幾何設計 27
3-4 進行實驗與量測 28
3-5 實驗結果與數據 40
3-6 應用ISIGHT建立預測模型 42
3-7 推導各目標預測方程式 48
第4章 齒輪於非均勻磁場之感應淬火模擬 53
4-1 COMSOL多物理軟體介紹 53
4-2 感應淬火模擬之概論 55
4-3 非均勻磁場模型之幾何建立 57
4-4 材質之選定 61
4-5 感應加熱模型之建立 65
4-6 淬火模型之建立 74
4-7 非均勻磁場模型之模擬結果 77
第5章 熱處理控制因數之最佳解及模型驗證 81
5-1 熱處理控制因數之最佳解 81
5-2 驗證非均勻磁場模型之正確性 83
5-2-1 變形量 84
5-2-2 表面硬度 85
5-2-3 硬化層深度 86
5-2-4 結果比較 87
5-3 非均勻磁場模型與均勻磁場模型之比較 89
5-3-1 變形量 91
5-3-2 表面硬度 92
5-3-3 硬化層深度 93
5-3-4 結果比較 94
5-4 綜合歸納 96
第6章 總結與未來展望 97
6-1 總結 97
6-2 未來展望 99
參考文獻 101
附錄Ⅰ 104
作者介紹 112
參考文獻 [1] Tong, D., Gu, J., & Totten, G. E. “Numerical investigation of asynchronous dual-frequency induction hardening of spur gear,” International Journal of Mechanical Sciences, 142, 1-9, 2018.
[2] Litvin, F.L. and Fuentes, A.F., Gear Geometry and Applied Theory, Cambridge University Press, 2nd ed., New York, 2004.
[3] Richard E.H. Practical Induction Heat Treating, ASM International, 2nd ed., 2015.
[4] Asadzadeh, M. Z., Raninger, P., Prevedel, P., Ecker, W., & Mücke, M. “Hybrid modeling of induction hardening processes.” Applications in Engineering Science, 100030, 2020.
[5] 林共進、方開泰,〈均勻試驗設計的理論及其應用〉,中國統計學報,第38卷,第4期,1989年12月,331-351頁。
[6] Kim, N. K., & Bae, K. Y, “Analysis of deformation in the carburizing-quenching heat treatment of helical gears made of SCM415H steel,” International Journal of Precision Engineering and Manufacturing, 16(1), 73-79, 2015.
[7] Sugianto, A., Narazaki, M., Kogawara, M., Shirayori, A., Kim, S. Y., & Kubota, S. “Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear.” Journal of materials processing technology, 209(7), 3597-3609, 2009.
[8] K. Mao, “Gear tooth contact analysis and its application in the reduction of fatigue wear,” Wear, volume 262, issues 11-12, 10 May 2007, pages 1281-1288.
[9] 施養旻:〈高週波感應快速加熱與氣體均勻施壓應用於壓印複製雙面微結構製程開發〉,碩士論文,國立臺灣大學,民國105年7月。
[10] C.P. Steinmentz, “On the law of hysteresis.” Encyclopedia of American Biography, vol. 13, pp.24-25, 1974.
[11] J. R. Garcia, J. M. Burdio, A. Martinez, J. Sancho, “A mehod for calculating the workpiece power dissipation in induction heating process,” IEEE APEC Records, 1994, pp. 302-307.
[12] V. Rudnev, D. Loveless, R.L. Cook. Handbook of Induction Heating, CRC Press, Second edition, 2017.
[13] 蔡彥柔:〈均勻設計法於最佳化系統參數實驗設計之應用〉,碩士論文,國立高雄應用科技大學,民國105年7月。
[14] CARMAR Accuracy CO., LTD, “Video measuring machine e-catalog,” Version 2017.09.
[15] 曾禹銜:〈應用旋風式銑削於螺旋式真空泵轉子加工之研究〉,碩士論文,國立中央大學,民國110年6月。
[16] Rogers, D.F. Mathematical elements for computer graphics, 1990.
[17] MITUTOYO, HV series vickers hardness tester manual.
[18] R. Errichello and A. Milburn, “Optimum carburized and hardened case depth”, Gear Technology 37, 2020, pp 58-65.
[19] N. Zhang and Y. Shi, “Improvement of cutting force and material removal rate for disc milling TC17 blisk tunnels using GRA–RBF–PSO method”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal Machanical Engineering Science, 233(16), 2019, pp 5556-5567.
[20] Buhmann M. D., Radial Basis Functions: Theory and Implementations, Cambridge University Press, Vol.12, 2003.
[21] N. Barka, A. J. Khelalfa, A. E. Ouafi, P. Bocher and J. Brousseau, “Effect of skin depth on hardness profile of gear heated by induction using 2D model”, Advanced Materials Research, vol 664, 2013, pp 884-890.
[22] J. K. Choi, K. S. Park and S. S. Lee, “Predicting the hardening depth of a sprocket by finite element analysis and its experimental validation for an induction hardening process”, Journal of Mechanical Science and Technology 32 (3), 2018, pp 1235~1241.
[23] I. Magnabosco, P. Ferro, A. Tiziani and F. Bonollo, “Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis”, Computational Materials Science 35, 2006, pg98-106.
[24] COMSOL, AC/DC module user’s guide, version: COMSOL 5.4.
[25] COMSOL, Heat transfer module user’s guide, version: COMSOL 6.1.
[26] COMSOL, COMSOL multiphysics reference manual, version: COMSOL 5.5.
[27] COMSOL, Metal processing module user’s guide, version: COMSOL 5.5.
[28] J. B. Leblond and J. C. Devaux, “A new kinetic model for anisothermal metallurgical phase transformations in steels including effect of austenite grain size,” Acta Metall., vol. 32, no. 1, 1984, pp. 137–146.
[29] H. J. M. Geijselaers, “Numerical simulation of stresses due to solid state transformations: The simulation of laser hardening,” doctoral dissertation, Univ. of Twente, Enschede, 2003.
[30] J. B. Leblond, G. Mottet, J. Devaux, and J.C. Devaux, “Mathematical models of anisothermal phase transformations in steels, and predicted plastic behaviour,” Mat. Sci. Tech., vol. 1, no. 10, 1985, pp. 815–822.
[31] D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metall., vol. 7, no. 1, 1959, pp. 59–60.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2024-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明