參考文獻 |
[1] 經濟部能源署:能源統計月報。2024年1月2日,取自https://www.esist.org.tw/newest/monthly
[2] 經濟部:能源轉型白皮書。2020年11月,取自https://energywhitepaper.tw/#/whitepaper
[3] 台灣電力公司:今日用電曲線圖。2024年1月10日,取自 https://www.taipower.com.tw/tc/page.aspx?mid=206&cid=404&cchk=8ccc1918-8cae-4f40-a2d0-b43454f4f218
[4] H. Chen, T. N. Cong, W. Yang, C.Tan, Y. Li, Y. Ding, “Progress in electrical energy storage system: A critical review”, Progress in Natural Science, vol.19, pp.291–312, March 2009.
[5] S. Al-Hallaj, H. Maleki, J.S. Hong, J.R. Selman, “Thermal modeling and design considerations of lithium-ion batteries”, Journal of Power Sources, vol.83, pp.1–8, October 1999.
[6] NCR18650B Datasheet. 取自https://pdf1.alldatasheet.com/datasheet-pdf/view/597043/PANASONICBATTERY/NCR18650B.html
[7] NCR18650GA Datasheet. 取自 https://pdf1.alldatasheet.com/datasheet-pdf/view/1492268/PANASONIC/NCR18650GA.html
[8] INR18650-25R Datasheet. 取自 https://pdf1.alldatasheet.com/datasheet-pdf/view/1492277/SAMSUNG/INR18650-25R.html
[9] INR18650-30Q Datasheet. 取自 https://pdf1.alldatasheet.com/datasheet-pdf/view/1131828/SAMSUNG/INR18650-30Q.html
[10] EVE ICR18650/20P Datasheet. 取自 https://www.endrich.com/sixcms/media.php/2/ICR18650%2020P-S02-LF%20B.pdf
[11] EVE ICR18650/25P Datasheet. 取自 https://www.imrbatteries.com/content/eve_25P.pdf
[12] EVE ICR18650/26V Datasheet. 取自 http://www.batimex.pl/zdjecia/pdf/inr18650-26v.pdf
[13] LG INR18650-F1L Datasheet. 取自 https://datasheetspdf.com/pdf-file/1265007/LG/INR18650F1L/1
[14] LG INR18650-MJ1 Datasheet. 取自 https://www.nkon.nl/sk/k/Specification%20INR18650MJ1%2022.08.2014.pdf
[15] Sony US18650VTC5A Datasheet. 取自 https://pdf1.alldatasheet.com/datasheet-pdf/view/1222412/SONY/US18650VTC5A.html
[16] Sony US18650VTC4 Datasheet. 取自 https://www.murata.com/-/media/webrenewal/products/batteries/cylindrical/pdf-sds/us18650vtc4-sds.ashx?la=ja-jp&cvid=20210215080000000000
[17] Y. Fan, Y. Bao, C. Ling, Y. Chu, X. Tan, S. Yang, “Experimental study on the thermal management performance of air coolingfor high energy density cylindrical lithium-ion batteries”, Applied Thermal Engineering, vol.155, pp.96–109, June 2019.
[18] T. Wang, K.J. Tseng, J. Zhao, Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies”, Applied Energy, vol.155, pp.229–238, December 2014.
[19] X. Yu, Z. Lu, L. Zhang, L. Wei, X.Cui, L. Jin, “Experimental study on transient thermal characteristics of stagger-arranged lithium-ion battery pack with air cooling strategy”, Applied Energy, vol.143, pp.118576, November 2019.
[20] shortword – PaulK:Tesla Model Y 電池模組。2021年10月9日。取自 https://twitter.com/shortword/status/1446781892729126915/photo/1
[21] H. Wang, T. Tao, J. Xu, X. Mei, X. Liu, G. Piao, “Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries”, Applied Thermal Engineering, vol.178, pp.115591, September 2020.
[22] Z. Rao, Y. Huo, X. Liu, G. Zhang, “Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam”, Journal of the Energy Institute, vol.88, pp.241–246, August 2015.
[23] R. Kizilel, A. Lateef, R. Sabbah, M. M. Farid, J. R. Selman, S. Al-Hallaj, “Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature”, Journal of Power Sources, vol.183, pp.370–375, August 2008.
[24] Y. Lv, X. Yang, X. Li, G. Zhang, Z. Wang, C. Yang, “Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins”, Applied Energy, vol.178, pp.376–382, September 2016.
[25] Z. Ling, F. Wang, X. Fang, X. Gao, Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling”, Applied Energy, vol.148, pp.403–409, June 2015.
[26] Y. Wang, P. Peng, W. Cao, T. Dong, Y. Zheng, B. Lei, Y. Shi, Fangming Jiang, “Experimental study on a novel compact cooling system for cylindrical lithium-ion battery module”, Applied Thermal Engineering, vol.180, pp.115772, November 2020.
[27] K. A. Joudi, A. M. Witwit, 2000, “Improvements of gravity assisted wickless heat pipes”, Energy Conversion and Management, vol.41, pp.2041–2061, December 2000.
[28] D. Jafari, A. Franco, S. Filippeschi, P. D. Marco, “Two-phase closed thermosyphons: A review of studies and solar applications”, Renewable and Sustainable Energy Reviews, vol.53, pp.575–593, January 2016.
[29] H. Kuncoro ,Y. F. Rao, K. Fukuda, “An experimental study on the mechanism of geysering in a closed two-phase thermosyphon”, International Journal of Multiphase Flow, vol.21, pp.1243–1252, November 1995.
[30] T. F. Lin, W. T. Lin, Y. L. Tsay, J. C. Wu, “Experimental investigation of geyser boiling in an annular two-phase closed thermosyphon”, International Journal of Heat and Mass Transfer, vol.38, pp.295–307, January 1995.
[31] K. Smith, R. Kempers, A. J. Robinson, “Confinement and vapour production rate influences in closed two-phase reflux thermosyphons Part A: Flow regimes”, International Journal of Heat and Mass Transfer, vol.119, pp.907–921, April 2018.
[32] A. J. Robinsona, K. Smith, T. Hughes, S. Filippeschi, “Heat and mass transfer for a small diameter thermosyphon with low fill ratio”, International Journal of Thermofluids, vol.1–2, February 2020.
[33] S. H. Noie, “Heat transfer characteristics of a two-phase closed thermosyphon”, Applied Thermal Engineering, vol.25, pp.495–506, March 2005.
[34] Y. Kim, S. H. Shin, J. S. Kim, S. M. You, J. Lee, “Boiling and condensation heat transfer of inclined two-phase closed thermosyphon with various filling ratios”, Applied Thermal Engineering, vol.145, pp.328–342, December 2018.
[35] W. Srimuang, S. Rittidech, B. Bubphachot, “Heat transfer characteristics of a vertical flat thermosyphon (VFT)”, Journal of Mechanical Science and Technology, vol.23, pp.2548–2554, September 2009.
[36] P. Amatachaya, W. Srimuang, “Comparative heat transfer characteristics of a flat two-phase closed thermosyphon”, International Communications in Heat and Mass Transfer, vol.37, pp.293–298, March 2010.
[37] G. P. Peterson, A. B. Duncan, M. H. Weichold, “Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers”, Journal of Heat Transfer, vol.115, pp.751–756, August 1993.
[38] G. P. Peterson, H. B. Ma, “Theoretical Analysis of the Maximum Heat Transport in Triangular Grooves: A Study of Idealized Micro Heat Pipes”, Journal of Heat Transfer, vol.118, pp.731–739, August 1996.
[39] S. H. Moon, G. Hwang, S. C. Ko, Y. T. Kim, “Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon”, Microelectronics Reliability, vol.44, pp.315–321, February 2004. |