博碩士論文 111322053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:113 、訪客IP:3.149.255.60
姓名 曹淑靚(Shu-Jing Cao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 下水污泥再利用於控制性低強度回填材料 之可行性與效益評估
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 隨著下水道普及率的提升,大量下水污泥的產生已使傳統處置方式不堪重負。因此研究從材料化的角度,探討將下水污泥摻入控制性低強度回填材料(CLSM)的可行性。且為提升下水污泥資源化再利用的效益,研究中引入焚化再生粒料進行相關試驗。本研究聚焦於三種不同乾燥程序處理的下水污泥:帶濾式脫水污泥、槳葉式乾燥污泥和熱泵式乾燥污泥,並特別關注脫水污泥。透過試驗了解污泥的材料特性及其在CLSM中的應用效果。利用摻料中的金屬離子與污泥中的不利因子進行化學沉澱,與水泥反應促進鈣釩石的生成,以解決下水污泥引起的嚴重緩凝問題。
本研究從工程效益、成本效益和減碳效益三方面進行綜合評估,並根據結果對下水污泥的處置提出建議。試驗結果顯示,將下水污泥應用於CLSM是可行的,但隨著污泥加入量越高,其試體強度越低且凝結時間變化劇烈,因此添加量有限並需搭配高水泥用量。硫酸鋁速凝劑適用於三種下水污泥,對下水污泥CLSM凝結時間有良好改善效果,且最佳使用量為水泥用量的10%至12%;過多硫酸鋁速凝劑的情況下,將影響強度發展。針對帶濾式脫水污泥,使用熟石灰作為摻料對下水污泥CLSM的強度具有明顯提升效果,過多熟石灰則會影響其凝結時間。下水污泥CLSM加入焚化再生粒料皆符合使用要求,但取代量不宜過多。
成本效益評估顯示,未來下水污泥產量將持續增加,污泥處置費用也有所上升,使得直接使用帶濾式脫水污泥能減少能源消耗和處理成本,具備經濟效益。於碳排放計算需以下水污泥全生命週期去進行計算,單考慮作為CLSM之原物料其碳排效益不佳,如若將下水污泥處理處置碳排加入計算其總碳排效益有所增加。且隨著掩埋場容量減少和運輸距離碳排放增加,材料化處置模式的環保優勢將逐年提升。
摘要(英) With the increasing coverage rate of sewage systems, the substantial generation of sewage sludge has overwhelmed traditional disposal methods. Therefore, this study explores the feasibility of incorporating sewage sludge into Controlled Low-Strength Material (CLSM) from a materialization perspective. To enhance the benefits of recycling sewage sludge, incinerated recycled aggregates were introduced into the related experiments. This research focuses on three types of sewage sludge treated by different drying processes: belt-filter dewatered sludge, paddle dryer-dried sludge, and heat pump dryer-dried sludge, with a particular emphasis on dewatered sludge. The study examines the material properties of sludge and its application in CLSM through experiments. By utilizing the metal ions in the admixtures to chemically precipitate with the unfavorable factors in the sludge, a reaction with cement promotes the formation of ettringite to address the severe retardation issue caused by sewage sludge.
The study conducts a comprehensive evaluation from the perspectives of engineering benefits, cost benefits, and carbon reduction benefits, and provides recommendations for sewage sludge disposal based on the results. The experimental results indicate that applying sewage sludge in CLSM is feasible. However, as the amount of sludge increases, the strength of the specimens decreases, and the setting time changes significantly, thus limiting the amount of sludge that can be added and requiring a high cement content. Aluminum sulfate quick-setting agents are suitable for all three types of sewage sludge, significantly improving the setting time of sludge CLSM, with the optimal usage being 10% to 12% of the cement content. Excessive aluminum sulfate quick-setting agents can affect the strength development. For belt-filter dewatered sludge, using slaked lime as an admixture significantly enhances the strength of sewage sludge CLSM, but too much slaked lime can affect the setting time. The addition of incinerated recycled aggregates to sewage sludge CLSM meets usage requirements, but the substitution amount should not be excessive.
The cost-benefit evaluation shows that the future production of sewage sludge will continue to increase, and sludge disposal costs will rise, making the direct use of belt-filter dewatered sludge reduce energy consumption and treatment costs, thus providing economic benefits. Carbon emissions calculations should be based on the entire life cycle of sewage sludge. When only considering its use as a raw material for CLSM, the carbon reduction benefits are not significant. However, if the carbon emissions from sludge treatment and disposal are included, the overall carbon reduction benefits increase. Furthermore, with the decreasing capacity of landfills and the increasing carbon emissions from transportation distances, the environmental advantages of materialization disposal models will enhance annually.
關鍵字(中) ★ 下水污泥 關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 xi
1 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究內容 3
2 第二章 文獻回顧 4
2.1 下水污泥介紹 4
2.1.1 臺灣地區下水污泥現況 4
2.1.2 下水污泥來源及特性 7
2.2 國內外下水污泥再利用現況 8
2.3 下水污泥危害因子 11
2.3.1 水分含量 11
2.3.2 重金屬 12
2.3.3 有機質 13
2.3.4 磷酸鹽類 13
2.4 下水污泥與水泥系材料混拌之影響 15
2.4.1 新拌階段 16
2.4.2 硬固階段 19
2.5 使用化學藥劑調整工程性質 19
2.5.1 水泥(Cemant-based)穩定污泥之機理 20
2.5.2 石灰(Lime-based)穩定污泥之機理 22
2.5.3 硫酸鋁速凝劑 25
2.6 化學沉澱法 26
2.7 碳排放計算 28
2.7.1 碳排放計算流程 29
3 第三章試驗規劃 31
3.1 實驗流程 33
3.1.1 下水污泥基本特性試驗 33
3.1.2 CLSM之配比設計 34
3.1.3 摻配條件及配比設計規畫構想說明 36
3.1.4 選擇合適摻料 39
3.2 試驗材料 40
3.2.1 各廠污泥來源介紹 40
3.2.2 焚化再生粒料 47
3.2.3 其他使用之材料 48
3.3 試驗儀器及相關設備 51
3.4 試驗內容及方法 55
3.4.1 下水污泥基本性質試驗 55
3.4.2 CLSM之工程性能試驗 57
3.5 配比代號說明 59
4 第四章 研究結果與討論 60
4.1 下水污泥材料基本性質分析 60
4.1.1 下水污泥物理性質試驗 60
4.1.2 下水污泥材料化特性試驗 62
4.1.3 毒性特性溶出程序檢測結果(TCLP) 64
4.2 下水污泥CLSM設計配比 64
4.2.1 下水污泥CLSM初始設計配比 64
4.2.2 下水污泥CLSM配比調整 79
4.2.3 進階配比試驗結果 86
4.3 帶濾式脫水污泥使用熟石灰配比 91
4.3.1 CLSM設計配比 91
4.3.2 CLSM試驗結果 92
4.4 下水污泥-焚化再生粒料CLSM 97
4.4.1 下水污泥-焚化再生粒料CLSM配比設計 97
4.4.2 下水污泥-焚化再生粒料CLSM試驗結果 101
4.4.3 再生粒料環境用途溶出程序試驗結果 109
4.5 成本分析 111
4.6 減碳效益評估 122
4.6.1 下水污泥處理處置路線與碳排放核算邊界 122
4.6.2 下水污泥最終碳排放核算 130
4.6.3 碳排比較與分析 135
5 第五章 結論與建議 138
5.1 結論 138
5.2 建議 140
6 參考文獻 141
7 附件下水污泥CLSM試驗相關照片 149
參考文獻 1. Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78, 60-73.
2. 內政部營建署 (2012)。下水道污泥含磷調查及最佳磷回收量之研究。未出版。
3. 張添晉 (1993)。污泥資源化回收再利用技術與成本效益分析。工業污染防治, 48, 139-162.
4. Lamastra, L., Suciu, N. A., & Trevisan, M. (2018). Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chemical and Biological Technologies in Agriculture, 5(1), 10.
5. Bonfiglioli, L., Cernuschi, S., & Piacenti, R. (2014). Sewage sludge: characteristics and recovery options. Waste Management, 34(12), 2619-2624.
6. 程淑芬 (2015, 12月)。下水污泥肥料化困境。內政部營建署-下水污泥再利用研討會,台北市。
7. 林獻山、張添晉、洪明宏 (2006, 11月)。下水污泥資源化再利用—作為土壤改良材施用於綠農地。下水道工程實務研討會,台北市。
8. 程介羲 (2015)。下水污泥再利用方案探討。學術論文。
9. Demirbas, A., Edris, G., & Alalayah, W. M. (2017). Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(10), 999-1006.
10. Demirbas, A., Taylan, O., & Kaya, D. (2016). Biogas production from municipal sewage sludge (MSS). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(20), 3027-3033.
11. Cleverson Vitorio Andreoli, M. v. S. a. F. F. (2007). Sludge Treatment and Disposal (Vol. 6). London, England: Springer.
12. 朱敬平 (2016)。我國都市污水處理廠下水污泥資源化再利用特性分析。中興工程, 132, 9-16.
13. 江康鈺、陳仁山 (2005)。污泥堆肥資材化過程重金屬物種型態變化與穩定性之評估。工業污染防治, 96, 23-41.
14. Bharathiraja, B. D., Venkatesh, K., & Rajasimman, M. (2014). Biofuels from sewage sludge- A review. International Journal of Chem Tech Research, 6, 4417-4427.
15. 陳渂愃、大下和徹 (2022)。日本污水污泥燃料化對脫碳社會之可行性評估。臺灣能源期刊, 9, 123-136.
16. Bhatty, J. I., & Reid, K. J. (1989). Moderate strength concrete from lightweight sludge ash aggregates. International Journal of Cement Composites and Lightweight Concrete, 11(3), 179-187.
17. Tay, J.-H., & Show, K.-Y. (1992). Utilization of municipal wastewater sludge as building and construction materials. Resources, Conservation and Recycling, 6(3), 191-204.
18. Tay, J.-H., & Show, K.-Y. (1997). Resource recovery of sludge as a building and construction material—A future trend in sludge management. Water Science and Technology, 36(11), 259-266.
19. Weng, C.-H., Lin, D.-F., & Chiang, P.-C. (2003). Utilization of sludge as brick materials. Advances in Environmental Research, 7(3), 679-685.
20. Monzó, J., Martínez, J., & Montes, M. (2003). Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Management, 23(4), 373-381.
21. Merino, I., Arévalo, L. F., & Romero, F. (2005). Characterization and possible uses of ashes from wastewater treatment plants. Waste Management, 25(10), 1046-1054.
22. Chen, M., Wang, C., Sun, W., & Liu, J. (2013). Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Management, 33(5), 1268-1275.
23. Li, D. H., & Ganczarczyk, J. (1989). Fractal geometry of particle aggregates generated in water and wastewater treatment processes. Environmental Science & Technology, 23(11), 1385-1389.
24. Ganczarczyk, J. J., & Li, D. H. (1990). Structure of activated sludge flocs. Biotechnology and Bioengineering, 35(1), 57-65.
25. Li, D., & Ganczarczyk, J. (1992). Advective transport in activated sludge flocs. Water Environment Research, 64(3), 236-240.
26. Tsang, K. R., & Vesilind, P. A. (1990). Moisture distribution in sludges. Water Science and Technology, 22(12), 135-142.
27. Vesilind, P. A., & Martel, C. J. (1990). Freezing of water and wastewater sludges. Journal of Environmental Engineering, 116(5), 854-862.
28. 曾迪華、潘時正 (2007, 7月)。下水道污泥處理處置之現況與展望。2007年下水道工程實務研討會-專題演講,台灣下水道協會。
29. Prud’homme, M. (2010, March). World Phosphate Rock Flows, Losses and Uses. Phosphates 2010 International Conference. Paris: International Fertilizer Industry Association (IFA).
30. Chen, Y., Zhang, Q., Zhang, X., & Lin, T. (2020). Strength and microstructure properties of solidified sewage sludge with two types of cement-based binders. Scientific Reports, 10(1), 20769.
31. Piasta, W., & Lukawska, M. (2016). The effect of sewage sludge ash on properties of cement composites. Procedia Engineering, 161, 1018-1024.
32. Lieber, W. (1974). The influence of phosphates on the hydration of Portland cement. In Proceedings of the VI International Congress on the Chemistry of Cement, Moscow, September.
33. Ben-Dor, L., & Rubinsztain, Y. (1979). The influence of phosphate on the hydration of cement minerals studied by DTA and TG. Thermochimica Acta, 30(1), 9-14.
34. Ma, W., & Brown, P. W. (1994). Effect of phosphate additions on the hydration of Portland cement. Advances in Cement Research, 6(21), 1-12.
35. Taylor, H. F. W. (1997). Cement Chemistry. London: Thomas Telford Publishing.
36. Kong, X., Shi, J., Wang, D., Hou, S., & Liu, H. (2012). Impacts of Phosphoric Acid and Phosphates on Hydration Kinetics of Portland Cement. Journal of The Chinese Ceramic Society, 40(1), 96-102.
37. Tan, H., Wang, X., Lu, W., & Zhang, Y. (2017). Effect of the Adsorbing Behavior of Phosphate Retarders on Hydration of Cement Paste. Journal of Materials in Civil Engineering, 29(9), 04017088.
38. Bénard, P., Seghir, A., & Bonnal, M. (2005). Hydration process and rheological properties of cement pastes modified by orthophosphate addition. Journal of the European Ceramic Society, 25(11), 1877-1883.
39. 朱偉 (2007)。以膨潤土為輔助添加劑固化/穩定化污泥的試驗研究。環境科學, 5, 1020-1025.
40. 張華, 範建軍, & 趙由才 (2008)。基於填埋處置的污水廠脫水污泥土工性質研究。同濟大學學報(自然科學版), 36(3), 361-365.
41. 常方強, 塗帆, & 羅才松 (2010)。污水處理廠污泥固化及影響因素的試驗研究。福建工程學院學報, 8(3), 258-261.
42. Pramanik, S. K., Wu, Q., & Shariq, M. (2024). Bio-corrosion in concrete sewer systems: Mechanisms and mitigation strategies. Science of The Total Environment, 921, 171231.
43. 鄭修軍, 朱偉, 李磊, 徐志榮, & 屈陽 (2008)。污泥固化材料優選試驗研究。岩土力學, 29(S1), 571-574.
44. 陳宏仁, & 阮國棠 (1988)。有害廢棄物之固化及安定化。工業污染防治, 26, 24-29.
45. 李公哲 (1983)。工業廢水處理技術(八)污泥之固化法。工業污染防治, 8, 75-82.
46. 王宇峰, 李瑞紅, 王小強, 梁增強, & 李昌科 (2010)。城市污水污泥固化處理實驗研究。應用化工, 47(12), 33-38.
47. Little, D. N. (1995). Handbook for Stabilization of Pavement Subgrades and Base Courses with Lime. Lexington, KY: National Lime Association.
48. National Lime Association. (2004). Lime-Treated Soil Construction Manual: Lime Stabilization & Lime Modification. Washington, D.C.: National Lime Association.
49. Eades, J. L., & Grim, R. E. (1960). REACTION OF HYDRATED LIME WITH PURE CLAY MINERALS IN SOIL STABILIZATION. Highway Research Board Bulletin, 261, 26-50.
50. Little, D. N., & Nair, S. (2009). Recommended Practice for Stabilization of Subgrade Soils and Base Materials. Washington, D.C.: American Association of State Highway and Transportation Officials.
51. Marinkovic, N., Mladenovic, A., & Stevanovic, S. (2022). Chemical Stabilization of Soil Using Lime as a Chemical Reagent. Scientific Journal of Civil Engineering, 10(1), 23-37.
52. Ingles, O. G., & Metcalf, J. B. (1972). Soil Stabilization: Principles and Practice (Vol. 11). Sydney: UNSW Press.
53. Board, T. R. (1987). Lime Stabilization: Reactions, Properties, Design, and Construction. Washington, D.C.: National Research Council.
54. Lim, S., Kim, S., & Kim, S. (2002). Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess. Water Research, 36(17), 4177-4184.
55. 趙樂軍, 曹閆 (2006)。固化污泥的工程性質及微觀結構特徵。岩土力學, 27(5), 740-744.
56. 楊力遠, 魏嘉, & 黃頌芬 (2017)。噴射混凝土液體速凝劑研究現狀。隧道建設, 37(5), 543-552.
57. Kan, C., Li, Z., & Zhang, X. (2013). Effect of Aluminium Sulfate on Cement Properties. Materials Science Forum, 743-744, 285-291.
58. 劉寧, 朱元, & 陳文波 (2012)。化學除磷工藝研究進展。化工進展, 31(07), 1597-1603.
59. 張志平, 馮金輝, 李雁鴻, 劉嵩, & 馬凱 (2021)。化學除磷在市政污水處理中的應用。環境保護前沿, 11(5), 1051-1056.
60. Nakasaki, K., Shoda, M., & Kubota, H. (1985). Comparison of Composting of Two Sewage Sludges. Journal of Fermentation Technology, 63(6), 537-543.
61. 陳子惟, 馬., 楊彬. (2019). 亞鐵鹽、鐵鹽、聚合鐵鹽和聚合鋁除磷工藝的對比實驗研究. 水污染及處理, 7(1), 34-38.
62. GHG Protocol Initiative. (n.d.). Corporate value chain (scope 3) accounting and reporting standard. Retrieved from https://www.ghgprotocol.org/standards/scope-3-standard
63. 歐陽嶠暉. (n.d.). 廢水處理廠操作管理(十一)污泥消化. 工業污染防治刊物.
64. 王建隆, 鄭宏德. (2001). 新式污泥乾燥技術. 產業環保工程實務技術研討會論文集, 419-428.
65. Robertson, L. (2006). Undesirable odors in finished paper and paper board products. In 2006 TAPPI Papermakers Conference and 2006 TAPPI Coating and Graphic Arts Conference Proceedings (pp. 1-11). TAPPI Press.Jung, H., & Kappen, J. (2010). Odor control in papermaking. Paper Age, 7-8.
66. Jung, H., & Kappen, J. (2010). Odor control in papermaking. Paper Age, 7-8.
67. Robertson, L. (2013). Deposit and odor problems in tissue and towel. METissue, Winter 2013 Edition, 5(1), 23-26.
68. Sposito, G. (1984). The Surface Chemistry of Soils. New York: Oxford University Press.
69. Erdincler, A., & Vesilind, P. A. (2000). Effect of sludge cell disruption on compactibility of biological sludges. Water Science and Technology, 42(9), 119-126.
70. IPCC. (2014). IPCC Fifth Assessment Report.
71. 郝曉地, 施筱琳, 李小霜, 吳宏信, 劉建業, 黃小杰, 張建國. (2019). 污泥幹化焚燒乃污泥處理/處置終極方式. 中國給水排水, 第4期, 35-42.
72. 宋曉雅. (2019). 污泥熱水解厭氧消化與常規厭氧消化的運行比較. 給水排水, 45(3), 26-30.
73. IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 5).
74. 行政院環境保護署. (2016). 2015年中華民國國家溫室氣體清冊報告.
75. 蔣自力, 金宜英, 張輝. (2018). 污泥處理處置與資源綜合利用技術. 中國: 化學工業出版社.
76. 林文聰, 劉子為, 張世宏, 蔡明亮, 王全振. (2017). 污水廠污泥典型處理處置工藝碳排放核算研究. 環境工程, 35(7), 168-175.
77. 王琳, 李賢浩, 劉子為, 李歡. (2022). 污泥處理處置路徑碳排放分析. 中國環境科學, 42, 2404-2412.
78. 劉洪濤, 鄭琳, 陳俊. (2013). 城鎮污水處理廠污泥處理處置工藝生命週期評價. 中國給水排水, 29(11), 11-13.
79. 張楠, 孟祥瑞. (2023). 城市污水處理廠污泥處理處置碳排放分析—以淮南市為例. 安徽理工大學學報(自然科學版), 43, 83-93.
80. 紀莎莎. (2019). 污泥幹化焚燒工藝碳排放研究及優化策略. 環境科技, 32.
81. 環境保護部. (2010). 城鎮污水處理廠污泥處理處置污染防治最佳可行技術指南(試行). 中國.
82. 張岳, 葛德昌, 孫永利, 劉靜, 高晨晨, 張維. (2021). 基於城鎮污水處理全流程環節的碳排放模型研究. 中國給水排水, 37(9), 65-74.
83. Dalpaz, R., Barros, E. G., Carvalho, A. T., & Machado, R. F. (2020). Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustainable Energy Technologies and Assessments, 40, 100774.
指導教授 黃偉慶 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明