參考文獻 |
[1] Inel, M., & Ozmen, H. B. (2006). Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings. Engineering structures, 28(11), 1494-1502.
[2] Bruschi, E., Calvi, P. M., & Quaglini, V. (2021). Concentrated plasticity modelling of RC frames in time-history analyses. Engineering Structures, 243, 112716.
[3] Scott, M. H., & Fenves, G. L. (2006). Plastic hinge integration methods for force-based beam–column elements. Journal of Structural Engineering, 132(2), 244-252.
[4] Haselton, C. B., Liel, A. B., Taylor-Lange, S. C., & Deierlein, G. G. (2016). Calibration of model to simulate response of reinforced concrete beam-columns to collapse. ACI Structural Journal, 113(6).
[5] Haselton, C. B., & Pacific Earthquake Engineering Research Center. (2008). Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. Pacific Earthquake Engineering Research Center.
[6] Sezen, H., & Moehle, J. P. (2004). Shear strength model for lightly reinforced concrete columns. Journal of structural engineering, 130(11), 1692-1703.
[7] Elwood, K. J., & Moehle, J. P. (2005). Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthquake Spectra, 21(1), 71-89.
[8] Filippou, F. C., Popov, E. P., & Bertero, V. V. (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints.
[9] Yassin, M. H. M. (1994). Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads. University of California, Berkeley.
[10] Luo, H., & Paal, S. G. (2018). Machine learning–based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals. Journal of Computing in Civil Engineering, 32(5), 04018042.
[11] Liu, Z., & Li, S. (2019). Development of an ANN-based lumped plasticity model of RC columns using historical pseudo-static cyclic test data. Applied Sciences, 9(20), 4263.
[12] Huang, C., Li, Y., Gu, Q., & Liu, J. (2022). Machine learning–based hysteretic lateral force-displacement models of reinforced concrete columns. Journal of Structural Engineering, 148(3), 04021291.
[13] Gao, Y., & Mosalam, K. M. (2018). Deep transfer learning for image‐based structural damage recognition. Computer‐Aided Civil and Infrastructure Engineering, 33(9), 748-768.
[14] Alipour, M., Harris, D. K., & Miller, G. R. (2019). Robust pixel-level crack detection using deep fully convolutional neural networks. Journal of Computing in Civil Engineering, 33(6), 04019040.
[15] Srivastava, S., Vargas-Munoz, J. E., & Tuia, D. (2019). Understanding urban landuse from the above and ground perspectives: A deep learning, multimodal solution. Remote sensing of environment, 228, 129-143.
[16] Chen, P. Y., & Guan, X. (2023). A multi-source data-driven approach for evaluating the seismic response of non-ductile reinforced concrete moment frames. Engineering Structures, 278, 115452.
[17] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
[18] Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
[19] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
[20] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214-223). PMLR.
[21] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. Advances in neural information processing systems, 30.
[22] 郭俊锋, 王淼生, 孙磊, & 续德锋. (2022). 基于生成对抗网络的滚动轴承不平衡数据集故障诊断新方法. 计算机集成制造系统, 28(9), 2825.
[23] Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L., & Ma, Z. (2020). Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Information Sciences, 512, 1009-1023.
[24] Liao, W., Lu, X., Huang, Y., Zheng, Z., & Lin, Y. (2021). Automated structural design of shear wall residential buildings using generative adversarial networks. Automation in Construction, 132, 103931.
[25] Wu, T. Y., Wu, R. T., Wang, P. H., Lin, T. K., & Chang, K. C. (2023). Development of a high-fidelity failure prediction system for reinforced concrete bridge columns using generative adversarial networks. Engineering Structures, 286, 116130.
[26] Huang, S. K., Chao, W. T., & Lin, Y. X. (2024). Conditional generation of artificial earthquake waveforms based on adversarial networks. Soil Dynamics and Earthquake Engineering, 180, 108622.
[27] Berry, M., Parrish, M., & Eberhard, M. (2004). PEER structural performance database user’s manual (version 1.0). University of California, Berkeley.
[28] 陳瑩瑄(2012)。鋼筋混凝土柱受撓曲變形參數之研究。〔碩士論文。國立中央大學〕。
[29] 游雅喬(2012)。鋼筋混凝土柱之極限破壞研究。〔碩士論文。國立臺北科技大學〕。
[30] 黃冠傑(2013)。鋼筋混凝土柱耐震圍束之研究。〔碩士論文。國立臺灣大學〕。
[31] 王禹琁(2013)。RC柱性能曲線分析模型之驗證與改進。〔碩士論文。國立成功大學〕。
[32] 吳秉誠(2017)。典型鋼筋混凝土柱構件震後性能研究。〔碩士論文。國立臺灣科技大學〕。
[33] 張宗豪(2021)。高軸力下高強度鋼筋混凝土柱撓曲主控之側力位移曲線。〔碩士論文。國立中興大學〕。
[34] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 115-133.
[35] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
[36] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324..
[37] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[38] 李坤展(2023)。數據驅動之鋼筋混凝土構架機率式地震風險評估。〔碩士論文。國立中央大學〕。
[39] ACI Committee. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute. |