博碩士論文 105681003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.144.232.156
姓名 沈敏樺(Min-Hua Shen)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 漸進式全球暖化下聖嬰的特徵與海氣回饋機制的變化
(Changes in El Niño characteristics and air-sea feedback mechanisms under progressive global warming)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 全球暖化下季風亞洲降水的變化
★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化★ MJO對南海颱風活動之影響
★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?★ Changes of the Hadley Cell During the Last Four Decades
★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation★ Changes of Tropical Tropopause in Response to Global Warming
★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究
★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming★ Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent
★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study★ The role of shallow convection in tropical circulation: a simple analytic approach
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 在全球暖化影響下,聖嬰/南方震盪現象El Niño/Southern Oscillation (ENSO)所驅動的極端天氣變化是氣候變遷裡的一個重要議題。本研究利用CMIP6 1pctCO2 漸進式暖化情境模擬資料去探討全球暖化將會如何改變聖嬰的特徵,包含聖嬰強度、發生頻率和東太平洋(EP El Niño)與中太平洋聖嬰(EP El Niño)發生比例變化。我們也探討了影響聖嬰現象的主要幾個回饋機制的變化與其所伴隨的大氣回饋。
  CMIP6模式的系集平均結果顯示,在暖化情境下聖嬰的強度增加了約2.03%,而發生的頻率增加了約4.08%。我們進一步發現CP El Niño事件和EP El Niño事件對全球暖化表現出不同的反應。特別是在全球暖化情境下,CP El Niño事件往往會加劇且發生頻率較高,而EP El Niño事件則會減弱且發生頻率較低;此結果導致El Niño的強度和頻率僅發生輕微變化。
  我們的研究也顯示了CMIP6從前70年到後70 年期間CP/EP El Niño比值的變化。從各種CMIP6模型中EP和CP El Niño事件的多樣性顯示,該系統預計第一個和第二個70年期間CP/EP比率可能增加約10% (從1.53到1.68),這項發現與全球暖化下SF(seasonal footprinting)模態的影響增加非常一致。
摘要(英) Under the influence of global warming, projecting changes in the El Niño Southern Oscillation (ENSO)-driven weather extremes under global warming is an important topic of climate change. In this study, we utilize the CMIP6 1pctCO2 scenarios to investigate how global warming may impact El Niño characteristics, specifically potential changes in the frequency, intensity, and CP/EP El Niño ratio. And also investigate the changes in the main air-sea feedback mechanisms (BF and SF) of ENSO and the corresponding atmospheric responses.
The CMIP6 results indicate significant discrepancies exist in projecting changes in El Niño intensity between the first and second 70-year periods. There appears to be an overall increase in El Niño intensity of about 2.03% in CMIP6. Based on the frequency change results. The ensemble mean suggests that the frequency of El Niño events may increase by approximately 4.06% under global warming. We further find that the CP and EP El Niño events exhibit distinct responses to global warming. In particular, CP El Niño events tend to intensify and occur more frequently, while EP El Niño events weaken and become less frequent in a warmer atmospheric environment. The contrasting reactions result in a slight alteration in the intensity and occurrence of El Niño.
Our study also shows the ensemble mean of CP/EP El Niño ratios from the first 70-year period to the last 70-year period in CMIP6. The diversity in the representation of EP and CP El Niño events across various CMIP6 models indicates that the ensemble projects a potential 10% increase in the CP/EP ratio (from 1.53 to 1.68) between the first and second 70-year periods. This finding is quite consistent with the increased influence of the SF mode under global warming.
關鍵字(中) ★ 聖嬰事件
★ 全球暖化
關鍵字(英) ★ El Niño
★ Global warming
論文目次 摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 9
2.1 Data Sources 9
2.2 Selection and classification of El Niño event 12
2.3 Air-sea feedback mechanisms 14
Chapter 3 Model performance 17
3.1 El Niño SSTA 18
3.2 CRE at Surface 20
Chapter 4 The change of El Niño under Progressive Global Warming 26
4.1 The characteristics of El Niño 26
4.2 The feedback mechanisms 30
Chapter 5 The Change in Super El Niño 40
Chapter 6 Summary and Future work 50
6.1 Summary 50
6.2 Future work 54
References 57
Appendix A: Three Primary Feedback Processes 68
Appendix B: The Mix-type El Niño 70
Appendix C: Changes in El Niño characteristics and air–sea feedback mechanisms under progressive global warming 82
參考文獻 Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224−232, https://doi.org/10.1038/nature11456.
Anderson, B. T., and Perez, R. C., 2015: ENSO and non-ENSO induced charging and discharging of the equatorial Pacific. Climate Dynamics, 45, 2309–2327, https://doi.org/10.1007/s00382-015-2472-x.
Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Atmospheres, 112, C11007, https://doi.org/10.1029/2006JC003798.
Bayr, T., C. Wengel, M. Latif, D. Dommenget, J. Lübbecke, and W. Park, 2019: Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Climate Dyn., 53, 155–172, https://doi.org/10.1007/s00382-018-4575-7.
Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2013: ENSO representation in climate models: from CMIP3 to CMIP5, Clim Dyn, 42, 1999–2018, https://doi.org/10.1007/s00382-013-1783-z.
Bing, Z., and S. Xie, 2017: The 2015/16 “Super” El Niño Event and Its Climatic Impact, Chinese Journal of Urban and Environmental Studies, 5, 1750017, https://doi.org/10.1142/S2345748117500178.
Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.
Cai, W., A. Santoso, G. Wang, S.-W. Yeh, S.-I. An, K. M. Cobb, M. Collins, E. Guilyardi, F.-F. Jin, J.-S. Kug, M. Lengaigne, M. J. McPhaden, K. Takahashi, A. Timmermann, G. Vecchi, M. Watanabe, and L. Wu, 2015a: ENSO and greenhouse warming. Nature Clim Change, 5, 849–859, https://doi.org/10.1038/nclimate2743.
Cai, W., S. Borlace, and M. Lengaigne, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4, 111–116, https://doi.org/10.1038/nclimate2100.
Cai, W., and coauthors, 2021: Changing El Niño-Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2, 628-644, https://doi.org/10.1038/s43017-021-00199-z.
Carton, J. A., G. A. Chepurin, L. Chen, 2018: SODA3: a new ocean climate reanalysis. Journal of Climate, 31, 6967-6983, https://doi.org/10.1175/JCLI-D-18-0149.1.
Chen, D., T. Lian, C. Fu, M. A. Cane, Y. Tang, R. Murtugudde, X. Song, Q. Wu, and L. Zhou, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339–345, https://doi.org/10.1038/ngeo2399.
Chen, L., T. Li, S. K. Behera, and T. Doi, 2016: Distinctive precursory air–sea signals between regular and super El Niños. Adv. Atmos. Sci., 33, 996–1004, https://doi.org/10.1007/s00376-016-5250-8.
Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. Journal of Climate, 17, 4143–4158, https://doi.org/10.1175/JCLI4953.1.
Collins, M., S.-I. An, W. Cai, A. Ganachaud, E. Guilyardi, F.-F. Jin, M. Jochum, M. Lengaigne, S. Power, A. Timmermann, G. Vecchi, and A. Wittenberg, 2010: The impact of global warming on the tropical Pacific Ocean and El Nino. Nature Geosci, 3, 391–397, https://doi.org/10.1038/ngeo868.
Ding, R., J. Li, Y.-H. Tseng, C. Sun, and Y. Guo, 2015: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. Journal of Geophysical Research: Atmospheres, 120, 27-45, https://doi.org/10.1002/2014JD022221.
Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability, Geophysical Research Letters, 42, 9440–9448, https://doi.org/10.1002/2015GL066281.
DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim., 25, 7399–7420, https://doi.org/10.1002/2015GL066281.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937-1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fang, X., and R. Xie, 2020: A brief review of ENSO theories and prediction. Science China: Earth Sciences, 63, 476-491, https://doi.org/10.1007/s11430-019-9539-0.
Fu, C., H. Diaz, and J. Fletcher, 1986: Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Monthly Weather Review, 114, 1716–1739, https://doi.org/10.1175/1520-0493(1986)114<1716:COTROS>2.0.CO;2.
Geng, X., Wenjun Zhang, Malte F. Stuecker and Fei-Fei Jin, 2017: Strong sub-seasonal wintertime cooling over East Asia and Northern Europe associated with super El Niño events. Scientific Reports, 7, 3770, https://doi.org/10.1038/s41598-017-03977-2.
Glantz, M. H., 2001: Currents of Change: Impacts of El Niño and La Niña on Climate and Society. Cambridge University Press, 266 pp.
Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G.-J. Oldenborgh, and T. Stockdale, 2009a: Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Am Met Soc, 90, 325–340, https://doi.org/10.1175/2008BAMS2387.1.
Guilyardi, E., P. Braconnot, F.–F. Jin, S.-T. Kim, M. Kolasinski, T. Li, and I. Musat, 2009b: Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim, 22, 5698–5718, https://doi.org/10.1175/2009JCLI2815.1.
Hersbach, H, B. Bell, P. Berrisford, et al., 2020: The ERA5 global reanalysis. Quarterly Journal of Royal Meteorological Society, 146, 1999-2049, https://doi.org/10.1002/qj.3803.
Hong, L.-C., LinHo, and F.-F. Jin, 2014: A Southern Hemisphere booster of super El Niño. eophys. Res. Lett., 41, 2142–2149, https://doi.org/10.1002/2014GL059370.
Huang, B., P. W. Thorne, V. F. Banzon, T. Boyer, G. Chepurin, J. H. Lawrimore, M. J. Menne, T. M. Smith, R. S. Vose, H.-M. Zhang, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30, 8179-8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Jia, F., W. Cai, B. Gan, L. Wu, and E. Di Lorenzo, 2021: Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nature Climate Change, 11, 840–847, https://doi.org/10.1038/s41558-021-01139-x.
Jian, Rao, and R. Ren, 2017: Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere. Advances in Atmospheric Sciences, 34, 1121–1133, https://doi.org/10.1007/s00376-017-6260-x.
Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.
Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. Journal of the Atmospheric Sciences, 54, 830–847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.
Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index of ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.
Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. Journal of Climate, 22, 615-632, https://doi.org/10.1175/2008JCLI2309.1.
Kim, S. T., and F.-F. Jin, 2011: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Clim. Dynam., 36, 15931607, https://doi.org/10.1007/s00382-010-0796-0.
Kim, S.-T., and F.-F. Jin, 2011: An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn, 36, 1609–1627, https://doi.org/10.1007/s00382-010-0872-5.
Kim, S.-T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014: Response of El Niño sea surface temperature variability to greenhouse warming. Nature Climate Change, 4, 786-790, https://doi.org/10.1038/nclimate2326.
Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two type of El Niño events: cold tongue El Niño and warm pool El Niño. Journal of Climate, 22, 1499-1515, https://doi.org/10.1175/2008JCLI2624.1.
Latif, M., and N. Keenlyside, 2009: El Nino/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci., 106, 20578–20583, https://doi.org/10.1073/pnas.071086010.
Latif, M., V. A. Semenov, and W. Park, 2015: Super El Niños in response to global warming in a climate model. Climatic Change, 132, 489-500, https://doi.org/10.1007/s10584-015-1439-6.
Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophysical Research Letters, 32, L16705, https://doi.org/10.1029/2005GL022860.
L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 1363–1382, https://doi.org/10.1175/BAMS-D-16-0009.1.
Li, J.-L., E. Suhas, M. Richardson, W.-L. Lee, Y.-H. Wang, J.-Y. Yu, T. Lee, E. Fetzer, G. Stephens, and M.-H. Shen, 2018: The impacts of bias in cloud-radiation-dynamics interactions on central-Pacific seasonal and El Nino simulations in contemporary GCMs. Earth and Space Science, 5, 50-60, https://doi.org/10.1002/2017EA000304.
Li, J.-L., K.M. Xu, J.-H. Jiang, W.-L. Lee, L.-C. Wang, J.-Y. Yu, G, Stephens, E. Fetzer, Y.-H. Wang, 2020: An overview of CMIP5 and CMIP6 simulated cloud ice, radiation fields, surface wind stress, sea surface temperatures and precipitation over tropical and subtropical oceans. Journal of Geophysical Research: Atmospheres, 125, e2020JD032848, https://doi.org/10.1029/2020JD032848.
Li, J.-L., K.-M. Xu, W.-L. Lee, J.-H. Jiang, E. Fetzer, G. Stephens, Y.-H. Wang, and J.-Y. Yu, 2022: Exploring radiation biases over the tropical and subtropical oceans based on treatments of frozen hydrometeor radiative properties in CMIP6 models. Journal of Geophysical Research: Atmospheres, 127, e2021JD035976, https://doi.org/10.1029/2021JD035976.
Li, J.-L., Y.-C. Tsai, K.-M. Xu, W.-L. Lee, J.-H. Jiang, J.-Y. Yu, E. Fetzer, and G. Stephens, 2022: Inferring the linkage of sea surface height anomalies, surface wind stress and sea surface temperature with the falling ice radiative effects using satellite data and global climate models. Environmental Research Communications, 4, 125004, https://doi.org/10.1088/2515-7620/aca3fe.
Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Reviews of Geophysics, 45, 1-34, https://doi.org/10.1029/2005RG000172.
Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models, Part III: the shortwave feedback. J Clim, 25, 4275-4293, https://doi.org/10.1175/JCLI-D-11-00178.1.
Merryfield, W. J., 2006: Changes to ENSO under CO2 doubling in a multimodel ensemble. J. Clim., 19, 4009–4027, https://doi.org/10.1175/JCLI3834.1.
Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamada, and S. E. Zebiak, 2009: ENSO theory. Journal of Geophysical Research, 103, 14261-14290, https://doi.org/10.1029/97JC03424.
Philander, S. G. H., 1985: El Niño and La Niña. Journal of the Atmospheric Sciences, 42, 2652-2662, https://doi.org/10.1175/1520-0469(1985)042<2652:ENALN>2.0.CO;2.
Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541–545, https://doi.org/10.1038/nature12580.
Shen, M.-H., and J.-Y. Yu, 2023: Changes in El Niño characteristics and air-sea feedback mechanisms under progressive global warming. Terrestrial Atmospheric & Oceanic Sciences, 34, 19, https://doi.org/10.1007/s44195-023-00051-5.
Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). Journal of Climate, 16, 1495–1510, https://doi.org/10.1175/1520-0442(2003)016<1495:EROGSS>2.0.CO;2.
Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, https://doi.org/10.1029/2012GL052759.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183-7192, https://doi.org/10.1029/2000JD900719.
Taylor, K. E., R.J. Stouffer, and G.A. Meehl, 2012: An overview of CMIP5 and the experiment design Bull. Am. Meteorol. Soc., 93, pp. 485-498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Trenberth, K. E., 1997: The definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771-2777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.
Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. Journal of Climate, 16, 2668–2675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.
Wang, C., 2018: A review of ENSO theories. National Science Review, 5, 813-825, https://doi.org/10.1093/nsr/nwy104.
Wang, J.-Z. and C. Wang, 2021: Joint Boost to Super El Niño from the Indian and Atlantic Oceans. J. Climate, 34, 4937–4954, https://doi.org/10.1175/JCLI-D-20-0710.1.
Wang, L.-C., J.-L. Li, K.-M. Xu, L. T. Dao, W.-L. Lee, J. H. Jiang, E. Fetzer, Y.-H. Wang, J.-Y. Yu, C.-A. Chen, 2021: The Potential Influence of Falling Ice Radiative Effects on Central-Pacific El Niño Variability under Progressive Global Warming. Environmental Research Letters, 16, 124062, https://doi.org/10.1088/1748-9326/ac3d56.
Webb, D. J., 2018: On the role of the North Equatorial Counter Current during a strong El Niño, Ocean Science, 14, 633–660, https://doi.org/10.5194/os-14-633-2018.
Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth′s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Am. Meteorol. Soc., 77, 853-868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
Xie, S. P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46, 340–350, https://doi.org/10.1034/j.1600-0870.1994.t01-1-00001.x.
Xu, K., C.-Y. Tam, C. Zhu, B. Liu, and W. Wang, 2016: CMIP5 Projections of Two Types of El Niño and Their Related Tropical Precipitation in the Twenty-First Century, Journal of Climate, 30, 849-864, https://doi.org/10.1175/JCLI-D-16-0413.1.
Xu, J., and J. C. L. Chan, 2001: The role of the Asian–Australian monsoon system in the onset time of El Niño events. Journal of Climate, 14, 418–433, https://doi.org/10.1175/1520-0442(2001)014<0418:TROTAA>2.0.CO;2.
Yeh, S.-W., and B. P. Kirtman, 2007: ENSO amplitude changes due to climate change projections in different coupled models. J. Clim., 20, 203–217, https://doi.org/10.1175/JCLI4001.1.
Yeh, S.-W., and J.-S. Kug, 2009: El Niño in a changing climate, Nature Letters, 461, 511-514, https://doi.org/10.1038/nature08316.
Ying, J, and P. Huang, 2016: Cloud-radiation feedback as a leading source of uncertainty in the tropical Pacific SST warming pattern in CMIP5 models. Journal of Climate, 29, 3867-3881, https://doi.org/10.1175/JCLI-D-15-0796.1.
Yu, J.-Y., and H.-K. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. Journal of Geophysical Research: Atmospheres, 112, D13106, https://doi.org/10.1029/2006JD007654.
Yu., J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central-Pacific and eastern-Pacific types of ENSO. Journal of Climate, 24, 708-720, https://doi.org/10.1175/2010JCLI3688.1.
Yu, J.-Y., and S. T. Kim, 2013: Identifying the types of major El Niño events since 1870. Int. J. Climatol., 33, 2105–2112, https://doi.org/10.1002/joc.3575.
Yu, J.-Y., and S.-W. Fang, 2018: The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophysical Research Letters, 45, 6611-6618, https://doi.org/10.1029/2018GL077664.
Zebiak, S. E., and M. A. Cane, 1987: A model El Nino-Southern Oscillation. Monthly Weather Review, 115, 2262–78, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.
Zelle, H., G. J. van Oldenborgh, G. Burgers, and H. Dijkstra, 2005: El Niño and greenhouse warming: results from ensemble simulations with the NCAR CCSM. J. Clim., 18, 4669–4683, https://doi.org/10.1175/JCLI3574.1.
Zhai, P. M., and Coauthors, 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. Journal of Meteorological Research, 30, 283–297, doi: 10.1007/s13351-016-6101-3, https://doi.org/10.1007/s13351-016-6101-3.
Zhang, Z., B. Ren, and J. Zheng, 2019: A unified complex index to characterize two types of ENSO simultaneously. Sci. Rep., 9, 8373, https://doi.org/10.1038/s41598-019-44617-1.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2024-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明