博碩士論文 110621603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.17.187.254
姓名 黃玄(Hoang Thi Huyen)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(Effects of Surface Layer Physics Schemes on the Simulated Intensity and Structure of Typhoon Rai (2021))
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ GPS掩星觀測資料同化及對區域天氣預報模擬之影響★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究
★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響★ 資料同化對台灣地區颱風和梅雨模擬之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-19以後開放)
摘要(中) 本研究使用WRF 4.5.1版探討不同地表層物理方案對熱帶氣旋強度和結構的影響,並以高解析度模擬了颱風Rai(2021)。研究設計了三種不同地表層物理方案的數值實驗,包括修訂的MM5方案(MM5)、擬Eta方案(CTL)和Mellor–Yamada-Nakanishi-Niino方案(MYNN)。通過模擬的表層、行星邊界層和颱風環流特徵來調查地表層物理方案的影響。結果顯示表層物理方案對颱風強度有很大影響,但對颱風路徑的影響較小。CTL的模擬結果和最佳路徑具有最高的相關係數和最小的偏差及方均根誤差,表示CTL的強度最接近JMA。在表層中,CTL的地表風速、摩擦速度、焓交換係數、地表熱通量和水氣通量以及水汽混合比相對較高,其次是MM5和MYNN。研究結果還表明,地表層物理方案對模擬結構如主環流和次環流、位溫、邊界層高度、暖芯結構和角動量有重要的影響,CTL產生的數量值大於MM5和MYNN。透過Sawyer-Eliassen方程式來分析貢獻的各項分量,表明非絕熱加熱在Rai的次環流發展中起到明顯作用。
摘要(英) The influences of surface layer physics schemes on tropical cyclone intensity and structure are investigated using the WRF 4.5.1 model with high resolution to simulate Typhoon Rai (2021). Numerical experiments are designed with three surface layer physics schemes including revised MM5 Scheme (MM5), Eta similarity scheme (CTL), and Mellor–Yamada-Nakanishi-Niino scheme (MYNN). The impact of surface layer physics schemes has been investigated through the simulated characteristics of the surface layer, planetary boundary layer, and typhoon circulation. The results show that surface layer physics schemes strongly affected typhoon intensity but barely affected typhoon track. With the highest correlation coefficient and smallest bias and root mean square error between the simulated CTL and best track compared to MM5 and MYNN, the intensity of CTL is closest to JMA. At the surface layer, relatively higher surface wind speed, friction velocity, enthalpy exchange coefficients, surface fluxes of heat and moisture, and water vapor mixing ratio are found in CTL, followed by MM5 and MYNN. The findings also demonstrate that simulated structures, such as primary and secondary circulation, potential temperature, boundary layer heights, warm-core structure, and angular momentum are substantially impacted by surface layer physics schemes, and CTL produces larger magnitudes than MM5 and MYNN. By using the Sawyer-Eliassen equation to analyze the contributing forcing components, it is shown that diabatic heating plays a major role in the induced secondary circulation associated with Rai.
關鍵字(中) ★ 地表層物理方案
★ WRF model
關鍵字(英) ★ Surface Layer Physics Schemes
★ WRF model
論文目次 摘要 i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1. Introduction 1
Chapter 2. Overview of Typhoon Rai (2021) 4
Chapter 3. Experimental Design 5
3.1. Model Configuration 5
3.2. Surface Layer Parameterization 6
3.2.1. MO Scheme 7
3.2.2. MM5 Scheme 8
3.2.3. MYNN Scheme 8
3.3. AAM Budget 9
3.4. Sawyer-Eliassen Equation 10
Chapter 4. Results 12
4.1. Simulated Track and Intensity 12
4.1.1. Typhoon Track 12
4.1.2. Typhoon Intensity 12
4.2. Characteristics of Surface Layer 14
4.2.1. Exchange Coefficient for Heat and Momentum 14
4.2.2. Horizontal Distribution 16
4.3. Characteristics of Planetary Boundary Layer 18
4.3.1. Primary and Secondary Circulation in PBL 18
4.3.2. Planetary Boundary Layer Height 19
4.3.3. Warm Core 20
4.4. Typhoon Circulation 22
4.5. AAM Budget Analysis 23
4.6. Analysis using the Sawyer-Eliassen Equation 25
4.7. Radar Reflectivity and Precipitation 27
4.7.1. Radar Reflectivity 27
4.7.2. Accumulated Precipitation 28
Chapter 5. Conclusions 30
References 32
Tables 42
Figures 43
Appendix 74
參考文獻 Bao, J.W., Gopalakrishnan, S.G., Michelson, S.A., Marks, F.D. and Montgomery, M.T., 2012. Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships. Monthly Weather Review, 140(10), pp.3278-3299.
Beljaars, A.C., 1995. The parametrization of surface fluxes in large‐scale models under free convection. Quarterly Journal of the Royal Meteorological Society, 121(522), pp.255-270.
Beljaars, A.C.M. and Viterbo, P., 1998. The role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, AAM Holtslag and PG Duynkerke, Eds.
Braun, S.A. and Tao, W.K., 2000. Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Monthly Weather Review, 128(12), pp.3941-3961.
Byers, H. R., 1944: General Meteorology. McGraw-Hill, 645 pp.
Callaghan, J. and Smith, R., 1998. The relationship between maximum surface wind speeds and central pressure in tropical cyclones. Australian Meteorological Magazine, 47(3), pp.191-202.
Chen, S.H. and Sun, W.Y., 2002. A one-dimensional time dependent cloud model. Journal of the Meteorological Society of Japan. Ser. II, 80(1), pp.99-118.
Chen, X., 2022. How do planetary boundary layer schemes perform in hurricane conditions: A comparison with large‐eddy simulations. Journal of Advances in Modeling Earth Systems, 14(10), p.e2022MS003088.
Chen, Y., Yang, K., Zhou, D., Qin, J. and Guo, X., 2010. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. Journal of Hydrometeorology, 11(4), pp.995-1006.
Davis, C., Wang, W., Chen, S.S., Chen, Y., Corbosiero, K., DeMaria, M., Dudhia, J., Holland, G., Klemp, J., Michalakes, J. and Reeves, H., 2008. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6), pp.1990-2005.
Deardorff, J.W., 1970. Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. Journal of Atmospheric Sciences, 27(8), pp.1211-1213.
DeMaria, M., Knaff, J.A. and Sampson, C., 2007. Evaluation of long-term trends in tropical cyclone intensity forecasts. Meteorology and Atmospheric Physics, 97(1), pp.19-28.
DeMaria, M., Sampson, C.R., Knaff, J.A. and Musgrave, K.D., 2014. Is tropical cyclone intensity guidance improving?. Bulletin of the American Meteorological Society, 95(3), pp.387-398.
Donelan, M.A., Haus, B.K., Reul, N., Plant, W.J., Stiassnie, M., Graber, H.C., Brown, O.B. and Saltzman, E.S., 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophysical Research Letters, 31(18).
Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences, 46(20), pp.3077-3107.
Dyer, A.J. and Hicks, B.B., 1970. Flux‐gradient relationships in the constant flux layer. Quarterly Journal of the Royal Meteorological Society, 96(410), pp.715-721.
Edson, J.B., Jampana, V., Weller, R.A., Bigorre, S.P., Plueddemann, A.J., Fairall, C.W., Miller, S.D., Mahrt, L., Vickers, D. and Hersbach, H., 2013. On the exchange of momentum over the open ocean. Journal of Physical Oceanography, 43(8), pp.1589-1610.
Elsberry, R.L., Lambert, T.D. and Boothe, M.A., 2007. Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Weather and Forecasting, 22(4), pp.747-762.
Emanuel, K. and Zhang, F., 2016. On the predictability and error sources of tropical cyclone intensity forecasts. Journal of the Atmospheric Sciences, 73(9), pp.3739-3747.
Emanuel, K.A., 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of Atmospheric Sciences, 43(6), pp.585-605.
Emanuel, K.A., 1995. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. Journal of Atmospheric Sciences, 52(22), pp.3969-3976.
Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A. and Edson, J.B., 2003. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. Journal of Climate, 16(4), pp.571-591.
French, J.R., Drennan, W.M., Zhang, J.A. and Black, P.G., 2007. Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. Journal of the Atmospheric Sciences, 64(4), pp.1089-1102.
Gao, S. and Chiu, L.S., 2010. Surface latent heat flux and rainfall associated with rapidly intensifying tropical cyclones over the western North Pacific. International Journal of Remote Sensing, 31(17-18), pp.4699-4710.
Gao, S., Jia, S., Wan, Y., Li, T., Zhai, S. and Shen, X., 2019. The role of latent heat flux in tropical cyclogenesis over the western North Pacific: Comparison of developing versus non-developing disturbances. Journal of Marine Science and Engineering, 7(2), p.28.
Garratt, J.R., 1994. The atmospheric boundary layer. Earth-Science Reviews, 37(1-2), pp.89-134.
Green, B.W. and Zhang, F., 2013. Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Monthly Weather Review, 141(7), pp.2308-2324.
Haus, B.K., Jeong, D., Donelan, M.A., Zhang, J.A. and Savelyev, I., 2010. Relative rates of sea‐air heat transfer and frictional drag in very high winds. Geophysical research letters, 37(7).
Huang, C.Y., Juan, T.C., Kuo, H.C. and Chen, J.H., 2020. Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: Topographic influence. Monthly Weather Review, 148(11), pp.4519-4544.
Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note, 437, 61 pp.
Janjić, Z.I., 1994. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), pp.927-945.
Janjic, Z.I., 1996. The surface layer in the NCEP Eta Model: Eleventh conference on numerical weather prediction. Norfolk, Amer Meteor Soc, Boston, MA, pp 354–355
Jarosz, E., Mitchell, D.A., Wang, D.W. and Teague, W.J., 2007. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315(5819), pp.1707-1709.
Jiménez, P.A., Dudhia, J., González-Rouco, J.F., Navarro, J., Montávez, J.P. and García-Bustamante, E., 2012. A revised scheme for the WRF surface layer formulation. Monthly Weather Review, 140(3), pp.898-918.
Kain, J.S. and Fritsch, J.M., 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models (pp. 165-170). Boston, MA: American Meteorological Society.
Kain, J.S., 2004. The Kain–Fritsch convective parameterization: an update. Journal of Applied Meteorology, 43(1), pp.170-181.
Kanase, R.D. and Salvekar, P.S., 2015. Impact of physical parameterization schemes on track and intensity of severe cyclonic storms in Bay of Bengal. Meteorology and Atmospheric Physics, 127, pp.537-559.
Li, X., Ming, J., Wang, Y., Zhao, K. and Xue, M., 2013. Assimilation of T‐TREC‐retrieved wind data with WRF 3DVAR for the short‐term forecasting of typhoon Meranti (2010) near landfall. Journal of Geophysical Research: Atmospheres, 118(18), pp.10-361.
Liu, Y., Zhang, D.L. and Yau, M.K., 1999. A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Monthly Weather Review, 127(11), pp.2597-2616.
Liu, W.T., Katsaros, K.B. and Businger, J.A., 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of the Atmospheric Sciences, 36(9), pp.1722-1735.
Ma, X., Li, J., Pang, S., Guo, T. and Ding, C., 2023. Influence of surface layer schemes on tropical cyclone Hato (2017) intensity. Journal of Atmospheric and Solar-Terrestrial Physics, 250, p.106110.
Ma, Z., Fei, J., Huang, X. and Cheng, X., 2015. Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. Journal of the Atmospheric Sciences, 72(1), pp.120-140.
Malkus, J.S. and Riehl, H., 1960. On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12(1), pp.1-20.
Miglietta, M.M., Mastrangelo, D. and Conte, D., 2015. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmospheric Research, 153, pp.360-375.
Ming, J. and Zhang, J.A., 2016. Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009). Advances in Atmospheric Sciences, 33, pp.58-72.
Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A., 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), pp.16663-16682.
Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A., 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), pp.16663-16682.
Monin, A.S. and Obukhov, A.M., 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151(163), p.e187.
Montgomery, M.T., Smith, R.K. and Nguyen, S.V., 2010. Sensitivity of tropical‐cyclone models to the surface drag coefficient. Quarterly Journal of the Royal Meteorological Society, 136(653), pp.1945-1953.
Nakanishi, M. and Niino, H., 2006. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology, 119, pp.397-407.
Nakanishi, M. and Niino, H., 2009. Development of an improved turbulence closure model for the atmospheric boundary layer. Journal of the Meteorological Society of Japan. Ser. II, 87(5), pp.895-912.
National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce, 2000. NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.
Nguyen, T.C. and Huang, C.Y., 2023. Investigation on the Intensification of Supertyphoon Yutu (2018) Based on Symmetric Vortex Dynamics Using the Sawyer–Eliassen Equation. Atmosphere, 14(11), p.1683.
Noh, Y., Cheon, W.G., Hong, S.Y. and Raasch, S., 2003. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary-Layer Meteorology, 107, pp.401-427.
Olson, J.B., Kenyon, J.S., Angevine, W., Brown, J.M., Pagowski, M. and Sušelj, K., 2019. A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW.
Olson, J.B., Smirnova, T., Kenyon, J.S., Turner, D.D., Brown, J.M., Zheng, W. and Green, B.W., 2021. A description of the MYNN surface-layer scheme.
Palmén, E. and Riehl, H., 1957. Budget of angular momentum and energy in tropical cyclones. Journal of the Atmospheric Sciences, 14(2), pp.150-159.
Paulson, C.A., 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology and Climatology, 9(6), pp.857-861.
Peng, C.H. and Wu, C.C., 2020. The impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. Journal of the Atmospheric Sciences, 77(11), pp.3907-3927.
Rappaport, E.N., Jiing, J.G., Landsea, C.W., Murillo, S.T. and Franklin, J.L., 2012. The Joint Hurricane Test Bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bulletin of the American Meteorological Society, 93(3), pp.371-380.
Reddy, M.V., Prasad, S.B., Krishna, U.V. and Reddy, K.K., 2014. Effect of cumulus and microphysical parameterizations on the JAL cyclone prediction. 92.60. Aa; 92.60. hb; 92.60. Wc.
Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.
Rogers, R., Aberson, S., Aksoy, A., Annane, B., Black, M., Cione, J., Dorst, N., Dunion, J., Gamache, J., Goldenberg, S. and Gopalakrishnan, S., 2013. NOAA′s hurricane intensity forecasting experiment: A progress report. Bulletin of the American Meteorological Society, 94(6), pp.859-882.
Ruan, Z., Li, J., Li, F. and Lin, W., 2022. Effects of local and non-local closure PBL schemes on the simulation of Super Typhoon Mangkhut (2018). Frontiers of Earth Science, 16(2), pp.277-290.
Shen, L.Z., Wu, C.C. and Judt, F., 2021. The role of surface heat fluxes on the size of Typhoon Megi (2016). Journal of the Atmospheric Sciences, 78(4), pp.1075-1093.
Shi, R. and Xu, F., 2024. Improvement of global forecast of tropical cyclone intensity by spray heat flux and surface roughness. Journal of Geophysical Research: Atmospheres, 129(8), p.e2023JD039624.
Shin, H.H. and Hong, S.Y., 2011. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorology, 139, pp.261-281.
Skamarock, Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D., and Huang, X. -Y, 2021. A Description of the Advanced Research WRF Model Version 4.3. No. NCAR/TN-556+STR.
Smith, S.D., 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research: Oceans, 93(C12), pp.15467-15472.
Stern, D.P. and Nolan, D.S., 2011. On the vertical decay rate of the maximum tangential winds in tropical cyclones. Journal of the Atmospheric Sciences, 68(9), pp.2073-2094.
Stull, R.B., 2012. An introduction to boundary layer meteorology. Springer Science & Business Media, 13.
Tastula, E.M., Galperin, B., Sukoriansky, S., Luhar, A. and Anderson, P., 2015. The importance of surface layer parameterization in modeling of stable atmospheric boundary layers. Atmospheric Science Letters, 16(1), pp.83-88.
Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004. Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
Trivedi, D.K., Mukhopadhyay, P. and Vaidya, S.S., 2006. Impact of physical parameterization schemes on the numerical simulation of Orissa super cyclone (1999). Mausam, 57(1), pp.97-110.
Troitskaya, Y.I. and Rybushkina, G.V., 2008. Quasi-linear model of interaction of surface waves with strong and hurricane winds. Izvestiya, Atmospheric and Oceanic Physics, 44(5), pp.621-645.
Wang, Y. and Miao, J., 2019. Impact of surface layer parameterizations on simulated sea breeze precipitation over the Hainan island. Chinese Journal of Geophysics, 62(1), pp.32-48.
Webb, E.K., 1970. Profile relationships: The log‐linear range, and extension to strong stability. Quarterly Journal of the Royal Meteorological Society, 96(407), pp.67-90.
Yang, K., Koike, T., Fujii, H., Tamagawa, K. and Hirose, N., 2002. Improvement of surface flux parametrizations with a turbulence‐related length. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 128(584), pp.2073-2087.
Yang, K., Koike, T., Ishikawa, H., Kim, J., Li, X., Liu, H., Liu, S., Ma, Y. and Wang, J., 2008. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. Journal of Applied Meteorology and Climatology, 47(1), pp.276-290.
Zhang, D.L. and Chen, H., 2012. Importance of the upper‐level warm core in the rapid intensification of a tropical cyclone. Geophysical Research Letters, 39(2).
Zhang, D.L., Liu, Y. and Yau, M.K., 2001. A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Monthly Weather Review, 129(1), pp.92-107.
Zhang, J.A., Black, P.G., French, J.R. and Drennan, W.M., 2008. First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophysical Research Letters, 35(14).
Zhang, J.A., Rogers, R.F., Nolan, D.S. and Marks, F.D., 2011. On the characteristic height scales of the hurricane boundary layer. Monthly Weather Review, 139(8), pp.2523-2535.
Zilitinkevich, S., 1970. Non-local turbulent transport: Pollution dispersion aspects of coherent structure of connective flows. WIT Transactions on Ecology and the Environment, 9, pp.53-60.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明