博碩士論文 105621005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.149.29.192
姓名 王悅晨(Yueh-Chen Wang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 多部氣膠光達解析臺灣大氣邊界層特性與空氣污染差異之研究
(Characteristics of the Atmospheric Boundary Layer and Associated Air Pollution in Taiwan Based on a Multiple Aerosol Lidars Study)
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 利用AERONET資料解析中南半島地區氣膠種類及成分
★ 氣膠對臺灣北部暖雲微物理和毛雨的影響★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers
★ 氣膠對臺灣中部平原夏季降水日變化之影響★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋
★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation
★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 本研究為臺灣首次利用微脈衝光達觀測網之連續觀測資料探討臺灣西部低層大氣結構,站點包括位於北部近郊的中大站、位於中部交通繁忙都市的西屯站、位在中部內陸地區的斗六站,及位於南部臨海的左營站,微脈衝光達觀測資料經由垂直觀測驗證後顯示光達所提供的氣膠剖面與大氣邊界層高度反演結果與探空氣球與無人機觀測結果趨勢一致。根據過去研究表示地面空氣品質為大氣擴散條件優劣以及污染源排放污染物濃度的共同影響結果,其中大氣擴散條件包含環境水平通風能力與大氣垂直結構變化,因此為更瞭解大氣垂直結構與空氣品質的關係,本研究利用微脈衝光達觀測大氣氣膠垂直剖面資料,發展一套適用於低緯度地區的大氣邊界層高度反演法,從而建立臺灣大氣邊界層高度資料庫,並針對以下三項主題進行探討:(1)大氣邊界層高度季節及日夜特徵與氣象因子之關係;(2)日間對流邊界層結構特徵與主導發展之因子;(3)大氣垂直結構對地面空氣污染程度之影響。
本研究發展適用於臺灣的大氣邊界層反演法,針對西部大氣邊界層高度(Atmospheric boundary layer heigth, ABLH)特徵歸納,據統計資料指出,北部近郊區、中部都市區域及中部內陸地區的ABL發展結構相似,而南部因選用站點臨海,大氣結構在氣候上呈現較接近於海洋型邊界層的特徵,即發展高度較低且日夜變化不顯著;ABLH發展受風速與氣溫所影響,春季時ABL發展主要為風速及氣溫共同影響;ABLH在夏季時則為氣溫主導,發展高度與氣溫相關係數最高達0.72;秋季時北部與中部都市為氣溫主導大氣結構發展、中部內陸及南部則受風速影響;冬季時東北季風首當其衝的北部其ABL發展受風速主導,較強的風切使北部ABL發展高度最高,中南部三站則為風速及氣溫共同主導。
平均而言,日間邊界層較夜間邊界層高約150公尺,各地夜間邊界層高度低於平均高度佔比超過70%,且高度皆不及500公尺,而在晴朗條件下,由於各地晴朗成因不同,使各地對流邊界層高度(Convective boundary layer height, CBLH)發展分別受不同因素主導,天氣條件在春季和冬季主要受高壓系統移動影響,夏秋兩季晴朗條件多半是受到颱風與低壓移動影響。
為評估大氣擴散程度(Atmospheric Dispersion Level)與空氣污染事件之關係,進一步分析不同地域之大氣垂直與水平的擴散條件,應用於解析大氣邊界層與地面空氣品質之關係,釐清大氣結構對於不同地理環境下空氣品質的重要性。透過大氣通風能力(Ability of Atmospheric Ventilation, V)定義兩大指數:大氣擴散程度指數(Atmospheric Dispersion Level Index, DI)及空氣污染程度指數(Air Pollution Level Index, PI),定量各地大氣垂直結構在高污染事件中的影響程度,其中以PIV為1代表受到垂直擴散條件不佳造成之空氣污染,PIH為則代表受到水平擴散條件不佳造成之空氣污染。本研究結果表示,北部近郊區域的春季與中部內陸地區的春冬兩季之高污染事件主要是受到垂直擴散條件不佳導致,其中中部內陸地區平均風速僅1.6 m s-1,終年低風速使環境對污染物的容忍度較低,處於容易發生空氣品質惡化的狀態,當ABLH出現變化時,便會明顯影響山麓區域的空氣品質,為臺灣獨特的地理特徵之空污效應,此區域在發生高污染事件時PIV為1時佔比大於35%;北部近郊區域的冬季、中部都市區域春冬兩季與南部沿海區域春冬兩季之高污染事件主要是由於水平擴散條件不良所導致,其中南部沿海地區因ABL結構屬於海洋型邊界層特徵且受東北風背風沉降抑制發展,ABLH變化較小使此區域空氣品質在高污染季節中為受水平擴散條件所主導,在冬季PIH為1時佔比達51%。
大氣擴散條件優劣以及污染源排放污染物濃度共同影響地面空氣品質,而本研究進一步分析臺灣不同地域之大氣垂直與水平的擴散條件,釐清大氣結構對於不同地理環境下空氣品質的重要性,本研究成果有助於未來欲針對缺乏大氣垂直剖面連續觀測的地區,進行空氣品質惡化肇因之評估依據。
摘要(英) This study is the first research that uses the continuous aerosol vertical profiles observation provided by aerosol lidar, micro pulse lidar (MPL) in Taiwan. The Micro Pulse Lidar Network is composed of four stations with different types of geography, including NCU, the Northern suburban site located at tableland; Xitun, the Central crowded-traffic city stie located at a shallow basin; Douliu, the Central inland city located at a foothill region; and Zuoying, the coastal city in the Southern area located at the coastal plain. According to the previous studies, the surface air quality is the result of the joint impact of the atmospheric dispersion condition and the pollutant concentrations. The atmospheric dispersion includes the horizontal ventilation ability and the vertical variety of atmosphere. In order to better understand the relationship between the vertical structure and air quality, this study develops a series of methods to retrieve the atmospheric boundary layer height (ABLH), which is suitable in low-latitude regions, to establish an ABLH database for Taiwan, and discusses the following themes: (1) the relationship between the characteristics of ABLH and meteorological factors within seasonal and diurnal variation; (2) the characteristics of the convective boundary layer and the factors that dominate its development; and (3) the influence of the vertical structure of the atmosphere on the level of surface air quality.
The results show that the development of ABL in the Northern and Central areas is similar to each other, while due to the location of the Southern site near the sea, the average of ABLH is lower than others with less diurnal variation; in other words, the ABL feature of the coastal site is close to the marine atmospheric boundary layers. The development of ABL is affected by temperature or wind speed (WS). In spring, the ABL is affected by both temperature and WS; while the temperature dominates the ABL developed in summertime, the correlation coefficient between summer ABLH and temperature is up to 0.72. In autumn, the temperature dominates the ABL growth of northern and central cities, and the WS affects the ABL development of inland cities and coastal sites. In the wintertime, the northern area bears the NE monsoon, and strong wind shear leads the development of ABLH to dominate by WS as shown in results.
In general, the difference between ABLH in daytime and at night is about 150 meters on average, and over 70% of the nighttime ABLH is lower than the average. Because the causes for clear days are different from site to site, the main factors of convective boundary layer height (CBLH) are different in different locations. The high-pressure systems dominate the condition of clear days in spring and winter, while the low-pressure systems and typhoons dominate the weather condition in summer and autumn.
To evaluate the relationship between the ability of atmospheric ventilation (V) and air pollution events, this study defined two indexes to quantify the affection of the vertical structure of the atmosphere in severe air pollution: the Atmospheric Dispersion Level Index (DI), which represents the dispersion ability of the environment, and the Air Pollution Level Index (PI), which represents the polluted level of dispersion condition. The PIV and PIH represent the air pollution affected by weak vertical and weak horizontal dispersion conditions, respectively. The results show that the wind is not only dominant in the ABL development in the northern area but also the reason for the horizontal dispersion condition that leads to high-polluted cases. In a centrally crowded-traffic city, poor vertical dispersion leads to polluted days in the spring, while weak horizontal ventilation ability leads to the accumulation of pollutants in the winter. For the inland cities, the atmospheric environment is influenced by low wind speeds, which makes them less tolerant to pollution; thus, the changes in vertical structure play an important role in the air quality in this area; the PIV belongs to unhealthy types of inland regions and is up to 35%. For the coastal city, due to the affection of marine and the repression from the leeward side of the NE monsoon making the various ABLH obscure and the horizontal dispersion condition dominating the polluted events as results, the PIH belongs to unhealthy types of coastal regions and is up to 51%.
This study further analyzes the atmospheric dispersion condition and clarifies the atmospheric structure to surface air quality. The main achievements of this study provide a reference for evaluating the cause of air quality deterioration based on ABL structures and the dispersion abilities of the atmosphere with geographical features.
關鍵字(中) ★ 氣膠光達
★ 大氣邊界層
★ 空氣品質
★ 大氣擴散程度
關鍵字(英) ★ Aerosol Lidar
★ Atmospheric Boundary Layer
★ Air Quality
★ Atmospheric Pollution Level Index
論文目次 摘要 i
Abstract iii
致謝 vii
目錄 ix
圖目錄 x
表目錄 xiv
符號參照表 xv
一、前言 1
1.1研究動機 1
1.2研究目的 3
二、文獻回顧 5
2.1大氣邊界層定義 5
2.2大氣邊界層觀測 9
2.3大氣邊界層高度反演 12
2.4大氣通風程度與擴散條件 15
2.5臺灣空氣品質研究 17
三、研究方法 21
3.1研究使用資料 23
3.2臺灣微脈衝光達觀測網 28
3.3大氣邊界層高度反演法 39
3.4大氣擴散條件與空氣污染程度 42
四、大氣垂直結構觀測與驗證 45
4.1探空氣球驗證 45
4.2無人機驗證 47
五、大氣邊界層高度特徵與空氣品質應用 53
5.1各光達測站之基本統計資料 53
5.2氣象因子對大氣邊界層高度之影響 82
5.3晴朗條件下日間對流邊界層特徵 85
5.4大氣擴散程度對空氣品質之影響 98
六、結論與展望 111
6.1結論 111
6.2展望 114
參考文獻 115
附錄 大氣邊界層判定說明 127
參考文獻 Ahasan, M. N., Chowdhury, M. A. M., Quadir, D. A. (2014). Sensitivity test of parameterization schemes of MM5 model for prediction of the high impact rainfall events over Bangladesh. J. Mech. Eng., 44(1), 33-42.
Allabakash, S., and Lim, S. (2020). Climatology of planetary boundary layer height-controlling meteorological parameters over the Korean Peninsula. Remote Sensing, 12(16), 2571.
Allaerts, D., and Meyers, J. (2015). Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer. Phys. Fluids, 27(6).
Baars, H., et al. (2016). An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling. Atmos. Chem. Phys., 16, 5111-5137.
Berkoff, T. A., Welton, E. J., Campbell, J. R., Scott, V. S., Spinhirne, J.D. (2003). Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET), in: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Presented at the IGARSS 2003. IEEE, Toulouse, France, 4395-4397.
Bianco, L., Wilczak, J. M., White, A. B. (2008). Convective boundary layer depth estimation from wind profilers: Statistical comparison between an automated algorithm and expert estimations. J. Atmos. Ocean. Technol., 25(8), 1397-1413.
Boers, R., Eloranta, E.W., Coulter, R.L. (1984). Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate. J. Climate Appl. Meteor., 23, 247-266.
Bravo-Aranda, J.A., et al. (2017). A new methodology for PBL height estimations based on lidar depolarization measurements: Analysis and comparison against MWR and WRF model-based results. Atmos. Chem. Phys., 17, 6839-6851.
Brooks, I. M., Fowler, A. M. (2012). An evaluation of boundary-layer depth, inversion and entrainment parameters by large-eddy simulation. Bound.-Layer Meteor. 142, 245-263.
Brooks, I.M. (2003). Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 1092-1105.
Browell, E., S. Ismail, and W. Grant (1998). Differential Absorption Lidar (DIAL) measurements from air and space. App. Phys.-B, 67, 399-410.
Businger, J. A., Wyngaard, J. C., Izumi, Y., Bradley, E. F. (1971). Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28(2), 181-189.
Campbell, J. R., Welton, E. J., Krotkov, N. A., Yang, K., Stewart, S. A., Fromm, M. D. (2012). Likely seeding of cirrus clouds by stratospheric Kasatochi volcanic aerosol particles near a mid-latitude tropopause fold. Atmos. Environ., 46, 441-448.
Campbell, J. R., Hlavka, D.L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., Scott III, V. S., Hwang, I. (2002). Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431-442.
Canny, J. (1986). A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8(6), 679-698.
Carroll, B. J.et al. (2022). Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): retrieval framework and first results. Atmos. Meas. Tech., 15(3), 605-626.
Chen, W.-N., Chiang, C.-W., Nee, J.-B. (2002). Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt., 41, 6470-6476.
Chen, Y. C., Hsu, C. Y., Lin, S. L., Chang-Chien, G. P., Chen, M. J., Fang, G. C., Chiang, H. C. (2015). Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5–10 in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol Air Qual. Res., 15. 2571-2583.
Chen, Y. C., et al. (2021). Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment. Atmos. Chem. Phys., 21(6), 4487-4502.
Cheng, F. Y., and Hsu, C. H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan. Sci. Rep., 9(1), 1-12.
Chiang, C. W., Das, S. K., Lin, C. Y., Nee, J. B., Sun, S. H., Chiang, H. W., Shu-Ting, Z. (2012). Multi-year investigations of aerosol layer using lidar measurements at Chung-Li, Taiwan. J. Atmos. Solar-Terr. Phys., 89, 40-47.
Chiang, C. W., et al. (2015). A new mobile and portable scanning lidar for profiling the lower troposphere. Geoscientific Instrumentation. Methods Data Syst., 4(1), 35-44.
Chou, C. C. K., Lee, C. T., Chen, W. N., Chang, S. Y., Chen, T. K., Lin, C. Y., Chen, J. P. (2007). Lidar observations of the diurnal variations in the depth of urban mixing layer: a case study on the air quality deterioration in Taipei, Taiwan. Sci. Total Environ., 374(1), 156-166.
Chuang, M. T., et al. (2014). Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmos. Environ., 89, 507-516.
Chuang, M. T., et al. (2017). A simulation study on PM2.5 sources and meteorological characteristics at the northern tip of Taiwan in the early stage of the Asian haze period. Aerosol Air Qual. Res., 17(12), 3166-3178.
Chuang, M. T., Chen, Y. C., Lee, C. T., Cheng, C. H., Tsai, Y. J., Chang, S. Y., Su, Z. S. (2016). Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environ. Pollut., 214, 273-281.
Colarco P. R. et al. (2003). Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations. J. Geophys. Res.: Atmos., 108(19), 8590.
Davis, K. J., N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan (2000). An objective method for deriving atmospheric structure from airborne lidar observations, J. Atmos. Oceanic Technol., 17, 1455-1468.
De Franceschi, M., Rampanelli, G., Sguerso, D., Zardi, D., Zatelli, P. (2003). Development of a measurement platformon a light airplane and analysis of airborne measurementsin the atmospheric boundary layer. Ann. Geophys.
De Tomasi, F., Miglietta, M.M., Perrone, M.R. (2011). The growth of the planetary boundary layer at a coastal site: A case study. Bound.-Layer Meteor., 139, 521–541.
De Wekker, S. F., and Kossmann, M. (2015). Convective boundary layer heights over mountainous terrain—a review of concepts. Front. Earth Sci., 3, 77.
Deardorff, J. W., Willis, G. E., Stockton, B. H. (1980). Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer. J. Fluid Mech., 100, 41-64.
Deng, G., and Cahill, L. W. (1993). An adaptive Gaussian filter for noise reduction and edge detection. In 1993 IEEE conference record nuclear science symposium and medical imaging conference. IEEE, 1615-1619
Draxler, R. R., Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteor. Mag., 47(4), 295-308.
Driedonks, A. G. M., and Tennekes, H. (1984). Entrainment effects in the well-mixed atmospheric boundary layer. Bound.-Layer Meteor., 30(1-4), 75-105.
Durre, I., Vose, R. S., Wuertz, D. B. (2006). Overview of the integrated global radiosonde archive. J. Clim., 19(1), 53-68.
Emeis, S. (2010). Surface-based remote sensing of the atmospheric boundary layer. Springer Science & Business Media., 40.
Ester, M., Kriegel, H.P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, 226–231.
Finnigan, J. J. (2007). The turbulent wind in plant and forest canopies. Academic Press, Burlington, USA. 15-58.
Flamant, C., Pelon J., Flamant P. H., Durand P. (1997). Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound-Layer Meteor., 83, 247-284.
Flynn, C. J., Mendozaa, A., Zhengb, Y., Mathurb, S. (2007). Novel polarization-sensitive micropulse lidar measurement technique. Opt. Express, OE 15, 2785-2790.
Fromm, M., Kablick III, G., Nedoluha, G., Carboni, E., Grainger, R., Campbell, J., Lewis, J. (2014). Correcting the record of volcanic stratospheric aerosol impact: Nabro and Sarychev Peak. J. Geophys. Res.: Atmos., 119(17), 10-343.
Gamage, N., and Hagelberg C. (1993). Detection and analysis of microfronts and associated coherent events using localized transforms. J. Atmos. Sci., 50, 750-756.
Garratt, J. R. (1994). The atmospheric boundary layer. Earth-Sci. Rev., 37(1-2), 89-134.
Gaudio, P., et al. (2015). Detection and monitoring of pollutant sources with Lidar/Dial techniques. J. Phys.: Conf. Ser., 658, 012004.
Gifford, F.A. (1962). Uses of routine meteorological observations for estimating atmospheric dispersion. Nuclear Safety, 2(4), 47-51.
Haarig, M., et al. (2017). Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE. Atmos. Chem. Phys., 17(23), 14199-14217.
Hair, J. W., et al. (2008). Airborne High Spectral Resolution Lidar for Profiling Aerosol Optical Properties, Appl. Opt., 47.
He, Y., et al. (2021). Investigations of high-density urban boundary layer under summer prevailing wind conditions with Doppler LiDAR: A case study in Hong Kong. Urban Clim., 38, 100884.
Hegarty, J. D., et al. (2018). Analysis of the planetary boundary layer height during DISCOVER-AQ Baltimore–Washington, DC, with lidar and high-resolution WRF modeling. J. Appl. Meteorol. Clim., 57(11), 2679-2696.
Hennemuth, B., and Lammert, A. (2006). Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound-Layer Meteor., 120, 181-200.
Holben, B. N., et al. (1998). AERONET—A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16.
Holzworth, G. C. (1964). Estimates of mean maximum mixing depths in the contiguous United States. Monthly Weather Review, 92(5), 235-242.
Hsu, C. H., and Cheng, F. Y. (2016). Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmos. Environ., 144, 397-408.
Hsu, C. H., and Cheng, F. Y. (2019). Synoptic weather patterns and associated air pollution in Taiwan. Aerosol Air Qual. Res., 19(5), 1139-1151.
Huang, H. Y., Wang, S. H., Huang, W. X., Lin, N. H., Chuang, M. T., da Silva, A. M., Peng, C. M. (2020). Influence of Synoptic‐Dynamic Meteorology on the Long‐Range Transport of Indochina Biomass Burning Aerosols. J. Geophys. Res.: Atmos., 125(3), e2019JD031260.
International Geophysics. (1988) Chapter 13 Marine Atmospheric Boundary Layer. International Geophysics, 42, 197-222.
IPCC (2013). Chapter 7: Clouds and Aerosols. [Stocker, T.F., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC (2021). Chapter 6: Short-lived Climate Forcers. [Masson-Delmotte, V., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 817-922.
Jung, C. R., Hwang, B. F., Chen, W. T. (2018). Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environ. Pollut., 237, 1000-1010.
Kalthoff, N., Binder, H. J., Kossmann, M., Vögtlin, R., Corsmeier, U., Fiedler, F., Schlager, H. (1998). Temporal evolution and spatial variation of the boundary layer over complex terrain. Atmos. Environ., 32(7), 1179-1194.
Kanda, M. (2007). Progress in urban meteorology: A review. 気象集誌, 第2輯, 85, 363-383.
Kezoudi, M., et al. (2021). The Unmanned Systems Research Laboratory (USRL): A New Facility for UAV-Based Atmospheric Observations. Atmosphere, 12(8), 1042.
Kiefer, M. T., Charney, J. J., Zhong, S., Heilman, W. E., Bian, X., Hom, J. L., Patterson, M. (2019). Evaluation of the ventilation index in complex terrain: a dispersion modeling study. J. Appl. Meteorol. Clim., 58(3), 551-568.
Kim, K. W., and Kim, Y. J. (2018). Characteristics of visibility-impairing aerosol observed during the routine monitoring periods in Gwangju, Korea. Atmos. Environ., 193, 40-56.
Kim, S. W., and Brown, R. D. (2021). Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sus. Energ. Rev., 148, 111256.
Kobayashi, A., Hayashida, S., Iwasaka, Y., Yamato, M., Ono, A. (1987). Consideration of depolarization ratio measurements by lidar-in relation to chemical composition of aerosol particles. J. Meteorol. Soc. JP. Ser. II, 65(2), 303-307.
Kovalev, V. A., and Eichinger, W. E. (2004). Elastic lidar: theory, practice, and analysis methods. John Wiley & Sons.
Lavdas, L.G. (1986). An atmospheric dispersion index for prescribed burning. U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, Asheville, NC. Research Paper, SE-256.
Lewis, J.R., Welton, E.J., Molod, A.M., Joseph, E. (2013). Improved boundary layer depth retrievals from MPLNET: IMPROVED. J. Geophys. Res., 118, 9870-9879.
Li, H., Yang, Y., Hu, X.M., Huang, Z., Wang, G., Zhang, B., Zhang, T. (2017). Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data. J. Geophys. Res., 122, 4578-4593.
Lin, C. Y., Liu, S. C., Chou, C. C. K., Huang, S. J., Liu, C. M., Kuo, C. H., Young, C. Y. (2005). Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmos. Environ., 39(33), 6066-6076.
Lin, N. H., et al. (2013). An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ., 78, 1-19.
Liu, J., Zheng, Y., Li, Z., Flynn, C., Welton, E. J., Cribb, M. (2011). Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmos. Environ., 45(35), 6469-6480.
Liu, S., and Liang, X. Z. (2010). Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23(21), 5790-5809.
Lolli, S., et al. (2020). Overview of the new Version 3 MicroPuLse NETwork (MPLNET) automatic precipitation detection algorithm. Remote Sens., 12(1), 71.
Lolli, S., et al. (2018). Vertically Resolved Precipitation Intensity Retrieved through a Synergy between the Ground-Based NASA MPLNET Lidar Network Measurements, Surface Disdrometer Datasets and an Analytical Model Solution, Remote Sens., 10, 1102.
Lolli, S., Delgado, R., Compton, J., Hoff, R. (2011). Planetary boundary layer height retrieval at UMBC in the frame of NOAA/ARL campaign. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII. SPIE, 8182, 146-154.
Luan, T., Guo, X., Guo, L., Zhang, T. (2018). Quantifying the relationship between PM 2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys., 18(1), 203-225.
Lucchese, L., and Mitra, S. K. (2001). Colour image segmentation: a state-of-the-art survey. Proc. Indian Natl. Sci. Acad. Part A, 67(2), 207-222.
Min, J. S., Park, M. S., Chae, J. H., Kang, M. (2020). Integrated System for Atmospheric Boundary Layer Height Estimation (ISABLE) using a ceilometer and microwave radiometer, Atmos. Meas. Tech., 13(12), 6965–6987.
Moeng, C. H., and Sullivan, P. P. (1994). A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51(7), 999-1022.
Molod, A., Takacs, L., Suarez, M., Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model. Dev., 8(5), 1339-1356.
Müller, D., et al. (2010). Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shape-independent particle properties. J. Geophys. Res., 115, D07202.
Nakajima, T., et al. (2007). Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. J. Geophys. Res.: Atmos., 112.
Nakoudi, K., Giannakaki, E., Dandou, A., Tombrou, M., Komppula, M. (2019). Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India. Atmos. Meas. Tech., 12(5), 2595-2610.
Nee, J. B., Chiang, C. W., Hu, H. l., Hu, S. X., Yu, J. Y. (2007). Lidar measurements of Asian dust storms and dust cloud interactions. J. Geophys. Res.: Atmos., 112.
Noh, Y. M., Müller, D., Lee, H., Lee, K., Kim, K., Shin, S., Kim, Y. J. (2012). Estimation of radiative forcing by the dust and non-dust content in mixed East Asian pollution plumes on the basis of depolarization ratios measured with lidar. Atmos. Environ., 61, 221-231.
Olivier Boucher. Atmospheric Aerosols. Springer Netherlands, 2015.
Ou-Yang, C. F., et al. (2023). Integrated ground and vertical measurement techniques to characterize overhead atmosphere: Case studies of local versus transboundary pollution. Sci. Total Environ., 887, 163919.
Pasquill, F. (1961). The estimation of dispersion of wind-borne material. Meteor. Mag., 90, 33-49.
Pasquill, F. (1974). Atmospheric diffusion, Second Edition (2nd ed.). John Wiley & Sons, Inc., New York NY.
Pani, S. K., et al. (2016). Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7‐SEAS/Dongsha Experiment. J. Geophys. Res.: Atmos., 121(9), 4894-4906.
Paulson, C. A. (1970). The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Climate Appl. Meteor., 9(6), 857-861.
Rotach, M. W. (1999). On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos. Environ., 33(24-25), 4001-4008.
Sakai, T., Nagai, T., Zaizen, Y., Mano, Y. (2010). Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber. Appl. Opt., 49(23), 4441-4449.
Sakai, T., Nagai, T., Nakazato, M., Mano, Y., Matsumura, T. (2003). Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Appl. Opt., 42(36), 7103-7116.
Salomonson, V. V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., Ostrow, H. (1989). MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote. Sens., 27(2), 145-153.
Sawamura, P. et al. (2012). Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere. Environ. Res. Lett., 7(3), 034013.
Schotland, R. (1974). Errors in the lidar measurements of atmospheric gases by differential absorption J. Appl. Meteor., 13. 71-77.
Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34(7), 1001-1027.
Seidel, D. J., Ao, C. O., Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res.: Atmos., 115(D16).
Senff, C., Bösenberg, J., Peters, G., Schaberl, T. (1996). Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and radar-RASS: a case study. Contrib. Atmos. Phys., 69. 161-176.
Shimada, S., Ohsawa, T., Chikaoka, S., Kozai, K. (2011). Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model. Sola, 7, 109-112.
Shreffler, J.H. (1978). Detection of centripetal heat-island circulations from tower data in St. Louis. Bound.-Layer Meteor., 15, 229–242.
Sobel, I., and Feldman, G. (1968). A 3 × 3 isotropic gradient operator for image processing. Presented at a talk at the Stanford Artificial Project. a talk at the Stanford Artificial Project in 1986, 271-272.
Spinhirne, J. D., J. A. R. Rall, V. S. Scott (1995), Compact eye safe lidar systems, Rev. Laser Eng., 23, 112–118.
Spinhirne, J. D. (1993). Micro pulse lidar. IEEE Trans. Geosci. Remote Sens., 31, 48-55.
Stull, R. B. (2015). Practical meteorology: an algebra-based survey of atmospheric science. University of British Columbia.
Stull, R. B. (1988). An introduction to boundary layer meteorology. Springer Science & Business Media.
Sugimoto, N., and Lee, C. H. (2006). Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths. Appl. Opt., 45(28), 7468-7474.
Sullivan, P. P., McWilliams, J. C., Weil, J. C., Patton, E. G., Fernando, H. J. (2020). Marine boundary layers above heterogeneous SST: Across-front winds. J. Atmos. Sci., 77(12), 4251-4275.
Tamura, Y., Ohkuma, T., Kawai, H., Uematsu, Y., Kondo, K. (2004). Revision of AIJ recommendations for wind loads on buildings. Structures 2004: Building on the Past, Securing the Future, 1-10.
Tsay, S. C., et al. (2013). From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmos. Environ., 78, 20-34.
Tsay, S. C., et al. (2016). Satellite-surface perspectives of air quality and aerosol-cloud effects on the environment: An overview of 7-SEAS/BASELInE. Aerosol Air Qual. Res., 16(11), 2581-2602.
Turner, D.B. (1994). Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, Second Edition (2nd ed.). CRC Press.
Vallero, D. A. (2014). Fundamentals of air pollution. Academic press.
Vivone, G., D’Amico, G., Summa, D., Lolli, S., Amodeo, A., Bortoli, D., Pappalardo, G. (2021). Atmospheric boundary layer height estimation from aerosol lidar: A new approach based on morphological image processing techniques. Atmos. Chem. Phys., 21, 4249–4265.
Wang S. H., et al. (2020). Determination of Lidar Ratio for Major Aerosol Types over Western North Pacific Based on Long-Term MPLNET Data. Remote Sensing, 12(17), 2769.
Wang, S. H., Hung, W. T., Chang, S. C., Yen, M. C. (2016). Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005-2014. Atmos. Environ., 126, 76-86.
Wang, S. H., et al. (2015). Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign. Aerosol Air Qual. Res., 15, 2037-2050.
Wang, S. H., et al. (2011). First detailed observations of long-range transported dust over the northern South China Sea. Atmos. Environ., 45(27), 4804-4808.
Wang, Y. C., Wang, S. H., Lewis, J. R., Chang, S. C., Griffith, S. M. (2021). Determining planetary boundary layer height by micro-pulse lidar with validation by UAV measurements. Aerosol Air Qual. Res., 21(5), 200336.
Wang, Y., et al. (2023). Climatology of the planetary boundary layer height over China and its characteristics during periods of extremely temperature. Atmos. Res., 294, 106960.
Weitkamp, C. (Ed.). (2006). Lidar: range-resolved optical remote sensing of the atmosphere. Springer Science & Business. 102, 399-443.
Welton, E. J., et al. (2000). Ground‐based lidar measurements of aerosols during ACE‐2: Instrument description, results, and comparisons with other ground‐based and airborne measurements. Tellus B. 52, 636-651.
Welton, E. J., and Campell, J.R. (2002). Micro-pulse lidar signals: Uncertainty analysis. J. Atmos. Oceanic Technol., 19, 2089-2094.
Welton, E. J., J. R. Campbell, J. D. Spinhirne, V. S. Scott (2001). Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems, in Lidar Remote Sensing for Industry and Environmental Monitoring, [edited by U. N. Singh, T. Itabe, and N. Sugimoto], Proc. SPIE, 4153, 151-158, Sendai, Japan.
Witte, B. M., Singler, R. F., & Bailey, S. C. (2017). Development of an unmanned aerial vehicle for the measurement of turbulence in the atmospheric boundary layer. Atmos., 8(10), 195.
Wu, P. C., and Huang, K. F. (2021). Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Sci. Rep., 11(1), 7593.
Yang, Y., Yim, S. H., Haywood, J., Osborne, M., Chan, J. C., Zeng, Z., Cheng, J. C. (2019). Characteristics of heavy particulate matter pollution events over Hong Kong and their relationships with vertical wind profiles using high‐time‐resolution Doppler lidar measurements. J. Geophys. Res.: Atmos., 124(16), 9609-9623.
Yen, M. C., C. M. Peng, T. C. Chen, C. S. Chen, N. H. Lin, R. Y. Tzeng, Y. A. Lee, C. C. Lin (2013). Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmos. Environ., 78, 35-50.
Young, A. T. (1982). Rayleigh scattering. Physics Today, 35, 42.
王聖翔、柯立晉、潘巧玲、劉豪聯、李育棋、游志淇、邱思翰(2023)。新一代低層大氣無人機探空系統。《前瞻科技與管理》,12(1),38-59。
江智偉、倪簡白(2007)。光達遙測中壢地區夜間邊界層變化和低層噴流之討論。《大氣科學》, 35(1), 1-11.
官岱煒、林博雄(2005)。台灣地區大氣探空剖面特徵分析(Doctoral dissertation, National Taiwan University Graduate Institute of Atmospheric Science)。
柯立晉、王聖翔、黃翔昱、王悅晨、莊翔富、洪若雅、游志淇、張順欽(2018)。 應用無人機觀測大氣邊界層結構. J. Photogramm. Remote Sensing, 23(2), 103-113.
指導教授 王聖翔(Sheng-Hsiang Wang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明