博碩士論文 110621007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.145.2.6
姓名 黃伯聖(Bo-Sheng Huang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 改善國道交通排放量時序分配以提升空品模擬結果
(Optimizing the Temporal Distribution of Highway Traffic Emissions to Improve Air Quality Simulations)
相關論文
★ 土地利用型態對地表能量收支與海陸風模擬的影響★ 探討邊界層參數化對氣象與空氣污染模擬結果的影響
★ 探討土地利用型態對珠江口沿岸地區氣象模擬的影響:高污染事件日之個案分析★ 探討台灣地區在春季期間經長程傳輸所觀測之一氧化碳濃度與綜觀天氣之關係
★ 探討地表參數對台灣地區氣象模擬的影響★ 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響
★ 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析★ 地表水文循環過程與大氣耦合作用對土壤溼度以及氣象模擬的影響
★ 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬★ 使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性
★ 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響★ 開發適用於大氣邊界層觀測的無人機系統
★ 雲林地區細懸浮微粒的來源解析★ 臺灣中部山區埔里盆地之局部環流與邊界層結構特性
★ 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響★ 探討地下水參數化對於臺灣地表水文過程之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-31以後開放)
摘要(中) 目前空氣品質模式需要將環境部所發布的TEDS排放量清單提供的之道排放量根據其月、日、小時特性進行時序分配,提供污染物排放的情境,目前的方法並未考量到月特性中包含了連續假期遭成的錯估,以及針對連續假期變動明顯的國道交通量並沒有提供對應變化的排放量。
本研究利用TDCS國道電子收費系統提供的高解析度車流量資訊,將對應車種、縣市別的車流量資訊進行計算,在進行權重計算前,優先去除了連續假期日的影響,先製作一分無連續假期的排放量情境,並對各種類型的連假特性提供日排放量倍率,可以彈性的對於假期排放量進行調整。
修正時序分配後的排放量,NOX在春節連續假期間平均每小時減少約0.13噸的排放量而NMHC在竹苗以南的地區增加約0.03噸,而在二月非連續假期的期間,NOX則會每小時增加約0.04噸的排放量,而NMHC則會減少約0.03噸,其排放量情境的改變也符合更加真實車流量,例如假期大貨車的減量導致NOX排放減少,而小客車出遊導致NMHC增加,證明該時序分配法能更好的詮釋模式中真實國道排放的情形。
在更新國道時序分配方法後,對於空氣模式的影響包含直接生成物NOX和NMHC的影響以及二次生成物O3和PM2.5的改變,主要濃度改變在國道周遭的西半部地區,在連續假期間NOX的減少最為顯著,在連續假期之弱綜觀天氣下,早上八點減少可達12~30ppb,且由於國道的西部地區屬於VOC-limited,導致O3的濃度會上升,日間濃度可增加約2~4ppb左右,夜間上升約1~3ppb,同時減少的NOX會使得空氣中的OH自由基增加並與NMHC反應導致NMHC的濃度減少約0.8~1.2ppb,而PM2.5受到氮氧化物二次生成的硝酸鹽類及直接排放的元素碳減少,日間模擬濃度減少每立方公尺0.8~1.2微克及夜間模擬濃度減少每立方公尺0.8~2微克。
與空氣品質監測站比較過後可得知,更改國道排放量時序分配,連假期間可以改善NOx的高估情形,普遍可減少1~2ppb的高估以及減少1~2的RMSE,O3濃度改善原本低估約1~2ppb左右, 且NMHC、PM2.5的RMSE也有些許減少。
摘要(英) The current air quality model requires temporal distribution of the emissions inventory provided by the Taiwan Emission Data System (TEDS), released by the Ministry of Environment, according to their monthly, daily, and hourly characteristics to provide pollution emission scenarios. The current method does not account for the misestimation caused by consecutive holidays in the monthly characteristics and does not provide corresponding emissions changes for significantly variable highway traffic during consecutive holidays.
This study utilizes high-resolution traffic volume data provided by the Traffic Data Collection System (TDCS) for national highways, calculates the traffic volume information corresponding to vehicle types and counties, and prioritizes the removal of the impact of consecutive holiday days before performing the weighting calculations. First, an emission scenario without consecutive holidays is created, and daily emission multipliers for various types of consecutive holiday characteristics are provided, allowing flexible adjustment of holiday emissions.
After correcting the temporal distribution of emissions, NOx emissions during the consecutive Chinese New Year holidays decrease by approximately 0.13 tons per hour on average, while NMHC emissions increase by about 0.03 tons in the areas south of Hsinchu and Miaoli. During February on non-consecutive holidays, NOx emissions increase by approximately 0.04 tons per hour, and NMHC emissions decrease by about 0.03 tons. These changes in the emission scenario align with the actual traffic volume, such as the reduction of NOx emissions due to fewer heavy trucks during holidays and the increase in NMHC due to more private car trips, proving that this temporal distribution method can better interpret the actual highway emissions in the model.
After updating the highway temporal distribution method, the impact on the air quality model includes changes in primary pollutants NOX and NMHC as well as secondary pollutants O3 and PM2.5. The main concentration changes occur in the western part of the region around highways. During consecutive holidays, NOx reductions are most significant, with decreases reaching 12-30 ppb at 8 A.M. under weak synoptic weather conditions. Since the western region along the highways is VOC-limited, O3 concentrations increase, with daytime concentrations rising by about 2-4 ppb and nighttime by about 1-3 ppb. The reduction in NOx also increases the OH radical concentration in the air, reacting with NMHC and resulting in a decrease in NMHC concentration by about 0.8-1.2 ppb. PM2.5 concentrations decrease due to reduced secondary nitrate formation from NOx and direct emissions of elemental carbon, with daytime simulated concentrations decreasing by 0.8-1.2 μg/m³ and nighttime by 0.8-2 μg/m³.
Comparison with air quality monitoring stations indicates that adjusting the highway emission temporal distribution can improve the overestimation of NOx during holidays, generally reducing overestimation by 1-2 ppb and decreasing RMSE by 1-2. The O3 concentration improves from an initial underestimation by about 1-2 ppb, and RMSE for NMHC and PM2.5 also shows some reduction.
關鍵字(中) ★ 交通排放
★ 空氣污染
★ 空氣品質模式
關鍵字(英) ★ TEDS
★ CMAQ
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言 2
1-2 文獻回顧 2
1-3 研究動機及目的 4
第二章 資料來源與研究方法 5
2-1 國道車流量資料來源及使用方法 6
2-2 模式介紹與設定 7
2-2-1 氣象模式 7
2-2-2 排放量清單 8
2-2-3 空氣品質模式 8
2-3 氣象及空氣品質觀測資料來源 9
2-4 研究方法 10
2-5 實驗設計 12
第三章 時序分配方法之結果與討論 14
3-1 月權重 14
3-1-1 小客車 14
3-1-2 小貨車 15
3-1-3 大客車 15
3-1-4 大貨車 15
3-2 週變化日權重 16
3-2-1 小客車 16
3-2-2 小貨車 16
3-2-3 大客車 17
3-2-4 大貨車 17
3-3 利用時間權重將車流量的時序分配結果與真實車流量比較 18
3-3-1 小客車 18
3-3-2 小貨車 18
3-3-3 大客車 19
3-3-4 大貨車 19
第四章 排放量及數值模式模擬結果及分析
4-1 氣象模式較驗 20
4-2 排放量情境變化 20
4-2-1 人為排放量占比 21
4-2-2 各物種排放量變化 21
4-3 空品模式模擬結果 22
4-3-1 連續假期空氣品質模擬 22
4-3-2 非連續假期空氣品質模擬 25
第五章 結論及未來展望 29
5-1 結論 28
5-2 未來展望 30
參考文獻 65
參考文獻 Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric environment, 34(12-14), 2063-2101.
Bae, M., Kim, B. U., Kim, H. C., Kim, J., & Kim, S. (2021). Role of emissions and meteorology in the recent PM2. 5 changes in China and South Korea from 2015 to 2018. Environmental Pollution, 270, 116233.
Baklanov, A., & Zhang, Y. (2020). Advances in air quality modeling and forecasting. Global Transitions, 2, 261-270.
Batterman, S., Cook, R., & Justin, T. (2015). Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses. Atmospheric environment, 107, 351-363.
Brioude, J., Kim, S. W., Angevine, W. M., Frost, G. J., Lee, S. H., McKeen, S. A., ... & Fast, J. D. (2011). Top‐down estimate of anthropogenic emission inventories and their
interannual variability in Houston using a mesoscale inverse modeling technique. Journal of Geophysical Research: Atmospheres, 116(D20).
Byun, D., Schere, K.L., 2006 : Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51-77.
Chen, K. S., Ho, Y. T., Lai, C. H., & Chou, Y. M. (2003). Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung,Taiwan. Atmospheric Environment, 37(13), 1811-1823.
Cheng, F. Y., & Hsu, C. H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan. Scientific reports, 9(1), 6635.Zhao, B., Liou, K. N., Gu, Y., Li, Q., Jiang, J. H., Su, H., ... & Hao, J. (2017). Enhanced PM2.5 pollution in China due to aerosol-cloud interactions. Scientific reports, 7(1), 4453.
Cheng, F. Y., Feng, C. Y., Yang, Z. M., Hsu, C. H., Chan, K. W., Lee, C. Y., & Chang, S. C.(2021). Evaluation of real-time PM2. 5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2. 5 forecasts in Taiwan. Atmospheric Environment, 244, 117909.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., ... & Janssens-Maenhout, G. (2020). High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific data, 7(1), 121.
Goldberg, D. L., Saide, P. E., Lamsal, L. N., de Foy, B., Lu, Z., Woo, J. H., ... & Streets, D. G.(2019). A top-down assessment using OMI NO2 suggests an underestimate in the NOx emissions inventory in Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 19(3), 1801-1818.
Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., & Carslaw, D. C. (2021). COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Chemistry and Physics, 21(5), 4169-4185.
Guenther A.B., Jiang X., Heald C.L., Sakulyanontvittaya T., Duhl T., Emmons L.K., Wang X., 2012 : The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471-1492.
Ho, C. C., Chen, L. J., & Hwang, J. S. (2020). Estimating ground-level PM2.5 levels in Taiwan using data from air quality monitoring stations and high coverage of microsensors. Environmental Pollution, 264, 114810.
Hossain, A., & Gargett, D. (2011, September). Road vehicle-kilometres travelled estimated from state/territory fuel sales. In Australasian Transport Research Forum 2011 Proceedings (pp. 28-30).
Hsu, C. H., Cheng, F. Y., Chen, C. L., Wu, D. H., Chen, T. Y., Liao, K. F., ... & Zhang, Y. T.(2023). A high-resolution inventory of ammonia emissions from agricultural fertilizer application and crop residue in Taiwan. Atmospheric Environment, 309, 119920.
Hwa, M. Y., Hsieh, C. C., Wu, T. C., & Chang, L. F. W. (2002). Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmospheric Environment, 36(12), 1993-2002.
Irwin, J. G., & Williams, M. L. (1988). Acid rain: chemistry and transport. Environmental Pollution, 50(1-2), 29-59.
Jiang, Y., Wang, S., Xing, J., Zhao, B., Li, S., Chang, X., ... & Dong, Z. (2022). Ambient fine particulate matter and ozone pollution in China: synergy in anthropogenic emissions and atmospheric processes. Environmental Research Letters, 17(12), 123001.
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369(6504), 702-706.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., ... & He, K. (2017). Anthropogenic emission inventories in China: a review. National Science Review, 4(6), 834-866.
McDuffie, E. E., Smith, S. J., O′Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., ... & Martin, R. V. (2020). A global anthropogenic emission inventory of atmospheric pollutants from sector-and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS). Earth System Science Data, 12(4),3413-3442.
Meng, X., Zhang, K., Pang, K., & Xiang, X. (2020). Characterization of spatio-temporal distribution of vehicle emissions using web-based real-time traffic data. Science of the total environment, 709, 136227.
Misaki, T., Ohsawa, T., Konagaya, M., Shimada, S., Takeyama, Y., & Nakamura, S. (2019).Accuracy comparison of coastal wind speeds between WRF simulations using different input datasets in Japan. Energies, 12(14), 2754.
Ravina, M., Caramitti, G., Panepinto, D., & Zanetti, M. (2022). Air quality and photochemical reactions: analysis of NOx and NO2 concentrations in the urban area of Turin, Italy. Air Quality, Atmosphere & Health, 15(3), 541-558.
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Shiu, C. J., Liu, S. C., Chang, C. C., Chen, J. P., Chou, C. C., Lin, C. Y., & Young, C. Y.(2007). Photochemical production of ozone and control strategy for Southern Taiwan. Atmospheric Environment, 41(40), 9324-9340.
Sicard, P., Crippa, P., De Marco, A., Castruccio, S., Giani, P., Cuesta, J., ... & Anav, A. (2021). High spatial resolution WRF-Chem model over Asia: Physics and chemistry evaluation. Atmospheric Environment, 244, 118004.
Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33(12), 1821-1845.
Singh, A., & Agrawal, M. (2007). Acid rain and its ecological consequences. Journal of Environmental Biology, 29(1), 15.
Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.- Y., Wang W., Powers J.G., 2008 : A Description of the Advanced Research WRF Version 3. National Center for Atmospheric Research Technical Note, NCAR, Boulder, CO, USA.
TEDS-11.0 (2019). Taiwan Emission Data System Version11.0, Ministry of Environment, Taipei, Taiwan, Republic of China.
Tsai, I. C., Lee, C. Y., Lung, S. C. C., & Su, C. W. (2021). Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality. Science of the Total Environment, 782, 146571.
Wang, H., Fu, L., Lin, X., Zhou, Y., & Chen, J. (2009). A bottom-up methodology to estimate vehicle emissions for the Beijing urban area. Science of the total environment, 407(6), 1947-1953.
Wang, Y. S., Chang, L. C., & Chang, F. J. (2021). Explore regional PM2.5 features and compositions causing health effects in Taiwan. Environmental Management, 67(1), 176-191
指導教授 鄭芳怡(Fang-Yi Cheng) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明