參考文獻 |
[1] S. C. Liew and D. C. Y. Tse A control-theoretic approach to adapting VBR
compressed video for transport over a CBR communications channel, IEEE
Trans. Networking, vol. 6, no. 1, pp. 42-55, 1998.
[2] P. Pancha and M. E. Zarki, MPEG coding for variable bit rate video trans-
mission,IEEE Commun. Mag., vol. 32, no. 5, pp. 54-66, May 1994.
[3] E. Elwalid, D. Heyman, T. Lakshman, A. Weiss, and D Mitra, Fundamental
bounds and approximations for ATM multiplexers with application to video
teleconferencing, IEEE J. Select. Areas Commun., vol. 13, no. 6, pp. 1004-
1016, Aug. 1995.
[4] J. Beran, R. Sherman, M. S. Taqqu, andW.Willinger, Long-range dependence
in variable-bit-rate video tra¢ c, IEEE Trans. Commun., vol. 43, no. 2, pp.
1566-1579, Feb.-March-April, 1995.
[5] D. P. Heyman and T. V. Lakshman, Source models for VBR broadcast-video
tra¢ c,IEEE/ACM Trans. Networking, vol. 4, no. 1, pp. 40-48, Feb. 1996.
[6] D. P. Heyman and T. V. Lakshman, What are the implications of long-range
dependence for VBR-video tra¢ c engineering,IEEE/ACM Trans. Networking,
vol. 4, no. 3, pp. 301-317, Jun. 1996.
[7] H. Heeke, Tra¢ c control algorithm for ATM networks,IEEE Trans. Circuits
System Video Technol., vol. 3, no. 3, pp. 182-189, June 1993.
[8] M. Conti, E. Gregori, and A. Larsson, Study of the impact of MPEG-1 corre-
lations on video-sources statistical multiplexing,IEEE J. Select. Areas Com-
mun., vol. 14, no. 7, pp. 1455-1471, Sep. 1996.
[9] M. Grossglauser and J.C. Bolot, On the relevance of long-range dependence
in network tra¢ c,IEEE/ACM Trans. Networking, vol. 7, no. 5, pp. 629-640,
Oct. 1999.
[10] S. Chong, S. Li and J. Ghosh, Predictive dynamic bandwidth allocation for
e¢ cient transport of real-time VBR video over ATM,IEEE J. Select. Areas
Commun., vol. 13, no. 1, pp. 12-23, Jan. 1995.
[11] P. Chang and J. Hu, Optimal nonlinear adaptive prediction and modelling
of MPEG video in ATM networks using piplined recurrent neural networks,
IEEE J. Select. Areas Commun., vol. 15, no. 6, pp. 1087-1100, Aug. 1997.
[12] A. Adas, Using adaptive linear prediction to support real-time VBR video
under RCBR network service model,IEEE Trans. Networking, vol. 6, no. 5,
pp. 635-644, Oct. 1998.
[13] S. J. Yoo, E¢ cient tra¢ c prediction scheme for real-time VBR MPEG video
transmission over high-speed networks,IEEE Trans. Broadcasting, vol. 48, no.
11, pp. 10-18, March 2002.
[14] A. D. Doulamis, N. D. Doulamis, and S. D. Kollias, An adaptable neural-
network model for recursive nonlinear tra¢ c prediction and modeling of MPEG
video sources,IEEE Trans. on Neural Networks, vol. 14, no. 1, pp. 150-166,
Jan. 2003.
[15] A. Bhattacharya, A. G. Parlos, and A. F. Atiya, Prediction of MPEG-
coded video source tra¢ c using recurrent neural networks,IEEE Trans. Signal
Processing, vol. 51, no. 8, pp. 2177-2190, August 2003.
[16] A. Abdennour, Evaluation of neural network architectures for MPEG-4 video
tra¢ c prediction," IEEE Trans. Broadcasting, vol. 52, no. 2, pp. 184-192, June
2006.
[17] N. Ansari, H. Liu, Y. Q. Shi, and H. Zhao, On Modeling MPEG Video Traf-
cs,IEEE Trans. Broadcasting, vol. 48, no. 4, pp. 337-347, Dec. 2002.
[18] K. M. Nagpal and P. P. Khargonekar, Filtering and smoothing in an H1
setting, IEEE Trans. Automatic Control, vol. 36, no. 2, pp. 152-160, Feb.
1991.
[19] X. Shen and L. Deng, Discrete H1
lter design with application to speech
enhance,ICASSP-95, vol. 2, pp. 1504-1507 1995.
[20] B. Hassibi, A. H. Sayed, and T. Kailath, Linear estimation in Krein spaces
part I: Theory,IEEE Trans. Automat. Contr., vol. 41, no. 1, pp. 18-33, Jan.
1996.
[21] B. Hassibi, A. H. Sayed, and T. Kailath, Linear estimation in Krein spaces
Part II: Application,IEEE Trans. Automat. Contr., vol. 41, no. 1, pp. 34-49,
Jan. 1996.
[22] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting,
Springer, New York, 1996.
[23] Z. Fan and P. Mars, Access ow control scheme for ATM network using neural
network-based tra¢ c prediction,IEE Proc. Commu., vol. 144, no 5, pp.295-
300, Oct. 1997.
[24] M. R. Pickering and J. F. Arnold, A perceptually e¢ cient VBR rate control
algorithm, IEEE Trans. Image Processing, vol. 3, no. 5, pp. 527-532, Sept.
1994.
[25] A. A. Tarraf, I. W. Habib, and T. N. Saadawi, A novel neural network tra¢ c
enforcement mechanism for ATM network,IEEE J. Select. Areas Commun.,
vol. 12, no. 6, pp. 1088-1095, Aug. 1994.
[26] N. M. Mara
h, Y. Q. Zhang, and R. L. Pickholtz, Modeling and queuing
analysis of variable-bit-rate coded video sources in ATM network,IEEE Trans.
Circuit Sept. Video Technol., vol. 4, no. 2, pp. 121-128, Apr. 1994.
[27] V. Catanaia, G. Ficili, S. Palazzo, and D. Panno, A comparative analysis of
fuzzy versus conventional policing mechanisms for ATMnetworks,IEEE/ACM
Trans. Networking, vol. 4, no. 3, pp. 449-459, Jun. 1996.
[28] P. Chemuil, J. Kbalfet, and M. Lebourgges, A fuzzy control approach for
adaptive tra¢ c routing,IEEE Commun. Mag., vol. 33, no. 7, pp. 70-76, Jul.
1995.
[29] On-line homepage: http://www-info3.informatik.uni-wuerzburg.de/MPEG/.
[30] F. H. P. Fitzek and M. Reisslein, MPEG-4 and H.263 video traces
for network performance evaluation, IEEE Network, vol.15, no. 6, Nov.-
Dec. 2001, pp. 40-54. Traces available at homepage: http://www-tkn.ee.tu-
berlin.de/research/trace/trace.html and fttp://www.eas.asu.edu/trace.
[31] H. Demuth, M. Beale, and M. Hagan, Neural Network Toolbox 5: Users Guide,
The MathWorks, 2007.
[32] H. Li, G. Liu, Z. Zhang, and Y. Li, Adaptive scene-detection algorithm for
VBR video stream,IEEE Trans. Multimedia, vol. 6, no. 4, pp. 624-633, August
2004.
[33] S. G. Wang, H. Y. Yeh, and P. N. Roschke, Robust control for structural
systems with parametric and unstructured uncertainties, Proceedings of the
American Control Conference, pp. 1109-1114, June 25-27, 2001.
[34] T. Shen and K. Tamura, Robust H1 control of uncertain nonlinear system via
state feedback,IEEE Transactions on Automatic Control, vol. 40, no. 4, pp.
766-769, April 1995.
[35] B. S. Chen, C. S. Tseng, and H. J. Uang, Mixed H2=H1 fuzzy output feedback
control design for nonlinear dynamic systems: an LMI approach,IEEE Trans.
Fuzzy Systems, vol. 8, no. 3, pp. 249-265, June 2000.
[36] M. Safonov and M. Athans, Robustness and computational aspects of non-
linear stochastic estimators and regulators,IEEE Transactions on Automatic
Control, vol. 23, no. 4, pp.717-725, Aug. 1978.
[37] F. Yang, Z. Wang, and D.W.C. Ho, Robust mixed H2=H1 control for a class
of nonlinear stochastic systems,IEE Proceedings, Control Theory and Appli-
cations, vol. 153, no. 2, pp. 175-184, March 2006.
[38] T. J. Tarn and Y. Rasis, Observers for nonlinear stochastic systems,IEEE
Trans. Automatic Control, vol. 21, no. 4, pp.441-448, Aug. 1976.
[39] C. D. Charalambous and S. M. Diouadi, Stochastic nonlinear minimax
ltering
in continuous-time,Proceedings of the 40th IEEE Conference on Decision and
Control, vol. 3, pp. 2520-2525, Dec. 2001.
[40] W. Zhang and B. S. Chen, Robust H1
ltering for nonlinear stochastic sys-
tems,IEEE Trans. Signal Processing, vol. 53, no. 2, pp. 589-598, Feb. 2005.
[41] F. Carravetta and G. Mavelli, Asymptotic properties of an output-feedback
suboptimal control scheme for stochastic bilinear systems,Proceeding of the
2004 American Control Conference, Boston, Massachusetts, pp. 3146-3151,
June 30-July 2, 2004.
[42] W. H. Chen, Y. T. Chang, and B. S. Chen, Nonlinear stochastic H2=H1 output
feedback control under state-dependent noise,IEEE Conference on Decision
and Control, pp. 302-307, Dec. 2006.
[43] T. Takagi and M. Sugeno, Fuzzy identi
cation of systems and its applications
to modeling and control,IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no.
1, pp. 116-132, Jan. 1985.
[44] C. S. Tseng, Robust Fuzzy Filter Design for a Class of Nonlinear Stochastic
Systems,IEEE Trans. Fuzzy Systems, vol. 15, no. 2, pp. 261-274, April 2007.
[45] L. Hu, W. Zhao, and S. Shao, Robust stochastic stabilization and robust H1
control for uncertain stochastic fuzzy systems,The 14th IEEE International
Conference on Fuzzy Systems, pp. 254-259, May 2005.
[46] S. C. Chen, Robust and Optimal Estimation for Uncertain Stochastic Fuzzy
T-S Models, Master thesis, Department of Electrical Engineering, Chung Hua
University, August 2007.
[47] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequal-
ities in System and Control Theory, Philadelphia, PA, SIAM, 1994.
[48] R. Z. Hasminski¼¬, Stochastic Stability of Di¤erential Equations, Netherlands,
International Publishers B. V. ,1980.
|