博碩士論文 111322012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:3.149.252.75
姓名 謝欣慈(Hsin-Tzu Hsieh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 單擺式電磁調諧質量阻尼器外加飛輪於結構振動控制之應用
相關論文
★ 顆粒調諧質量阻尼器最佳化設計於軌道系統減振之應用★ 顆粒阻尼器在軌道系統振動控制之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究旨在探討新型單擺式電磁調諧質量阻尼器結合飛輪(EM-FW-TMD)之系統,在雙向不對稱結構系統中之動力行為及其減振效益。當結構的雙向頻率不同時,該系統首先控制頻率較高之方向,並通過設計單擺擺長及與頂層相連接的鋼纜產生回復力。此外,為克服控制頻率較低方向之擺長不足問題,引入安裝於旋轉馬達後軸的飛輪裝置以延長週期並降低離頻。本研究推導馬達傳動系統施加於TMD和主結構之作用力與反作用力,組成包括與相對速度相關的阻尼力和與相對加速度相關的慣性力。透過調整飛輪質量及外接電阻,構建具有可變質量和阻尼特性的新型減振系統,兼具減振與儲能功能。根據慣質與電磁式阻尼理論,比較滑動式和單擺式EM-FW-TMD系統的動力特性與減振效能,發展單一擺長單擺式TMD系統之動力分析,體現單擺長系統於計算過程及實務應用方面更加簡單易行。將單擺長單擺式EM-FW-TMD透過最佳化計算,於長週期向加裝飛輪,在裝設於雙向頻率不同之高樓結構,驗證其在風荷載與地震力作用下之減振效益。
摘要(英) This study aims to investigate the dynamic behavior and vibration reduction efficiency of a novel pendulum-type electromagnetic tuned mass damper combined with flywheels (EM-FW-TMD) system in bi-directional structural systems. When the frequencies of the structure differ in two directions, the system first controls the direction with the higher frequency by designing the pendulum length and generating restoring force through cables connected to the top floor. To address the issue of insufficient pendulum length for the lower frequency direction, a flywheel device installed on the rear axle of the rotating motor is introduced to extend the period and reduce detuning.
This study derives the forces and reactions exerted by the motor drive system on the TMD and the main structure, which consist of damping forces related to relative velocity and inertial forces related to relative acceleration. By adjusting the flywheel size and external resistance, a novel vibration reduction system with variable mass and damping characteristics is constructed, featuring both vibration reduction and energy harvesting functions.
Based on the theories of inerter and electromagnetic damping, the dynamic characteristics and vibration reduction performance of sliding-type and pendulum-type EM-FW-TMD systems are compared. It develops a dynamic analysis of pendulum-type TMD systems with single pendulum length, highlighting the simplicity and feasibility of the single pendulum length system in computational processes and practical applications. The pendulum-type EM-FW-TMD system with single pendulum length, through optimization calculations, is equipped with a flywheel for long-period tuning. Its effectiveness in reducing vibrations under wind loads and seismic forces is verified when installed in high-rise structures with different bidirectional frequencies.
關鍵字(中) ★ 單擺式EM-FW-TMD
★ 慣質
★ 電磁式阻尼
★ 雙向結構
★ 減振與儲能
關鍵字(英) ★ Pendulum-type EM-FW-TMD
★ Inerter
★ Electromagnetic damper
★ Bidirectional structure
★ Vibration reduction and energy harvesting
論文目次 摘要 i
ABSTRACT ii
符號表 iii
誌謝 viii
目錄 ix
圖目錄 xii
表目錄 xvii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.3 本文內容 4
第二章 具飛輪電磁式調諧質量阻尼器之理論推導 6
2.1 慣質與電路系統介紹 6
2.2 馬達之電磁扭矩 8
2.3 減振系統之電磁阻尼係數與慣質之推導 10
第三章 滑動式與單擺式EM-FW-TMD系統之比較 14
3.1 模型配置 14
3.2 加裝EM-FW-TMD系統之動態平衡方程式 15
3.2.1 滑動式EM-FW-TMD加裝於單自由度結構動態平衡方程式 15
3.2.2 單擺式EM-FW-TMD加裝於單自由度結構動態平衡方程式 16
3.2.3 滑動式EM-FW-TMD加裝於多自由度結構動態平衡方程式 17
3.2.4 單擺式EM-FW-TMD加裝於多自由度結構動態平衡方程式 19
3.3 轉換函數與減振效益 20
3.4 最佳化設計方法 21
3.5 對主結構的振動控制效能比較(單向單自由度結構) 21
3.6 對主結構的振動控制效能比較(雙向單層樓結構) 26
第四章 單擺式EM-FW-TMD系統之動力行為 30
4.1 狀態空間法 30
4.2 單擺長TMD動力分析 31
4.2.1 自由振動 31
4.2.2 曲面圖 36
4.2.3 線性回復力 39
4.2.4 阻尼力的遲滯迴圈 41
第五章 單自由度結構加裝單擺式EM-FW-TMD系統之減振效能分析與驗證 43
5.1 單擺式調諧質量阻尼器(Case 1) 43
5.2 單擺式電磁調諧質量阻尼器(Case 2) 65
5.3 單擺式電磁調諧質量阻尼器外加飛輪I (Case 3) 80
5.4 單擺式電磁調諧質量阻尼器外加飛輪II (Case 4) 93
5.5 案例於頻率域下之轉換函數與減振效益比較 102
5.6 結論與分析 106
5.6.1 案例比較 106
5.6.2 Beating現象 109
第六章 多自由度結構加裝單擺式EM-FW-TMD系統之減振效能分析與驗證 113
6.1 多自由度模型設計 113
6.2 單擺式電磁調諧質量阻尼器(Case 2) 117
6.3 單擺式電磁調諧質量阻尼外加飛輪I (Case 3) 126
6.4 結論與分析 130
6.4.1 案例分析 130
6.4.2 EM-FW-TMD之衝程分析及其微幅擺動條件 131
第七章 結論 133
參考文獻 135
附錄一 141
參考文獻 [1] Frahm, H. (1911). Device for damping vibrations of bodies. Patent U.S., No.989-958.
[2] Ormondroyd, J., & Den Hartog, J. P. (1928). The theory of the dynamic vibration absorber. Journal of Fluids Engineering, 49(2).
[3] Den Hartog, J., & fourth edition Mechanical, J. D. H. (1956). Vibrations. McGraw-Hill Book Company, Inc., New York.
[4] Luft, R. W. (1979). Optimal tuned mass dampers for buildings. Journal of the Structural Division, 105(12), 2766-2772.
[5] McNamara, R. J. (1977). Tuned mass dampers for buildings. Journal of the Structural Division, 103(9), 1785-1798.
[6] Sadek, F., Mohraz, B., Taylor, A. W., & Chung, R. M. (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 26(6), 617-635.
[7] Chang, C. C. (1999). Mass dampers and their optimal designs for building vibration control. Engineering Structures, 21(5), 454-463.
[8] Ghosh, A., & Basu, B. (2007). A closed‐form optimal tuning criterion for TMD in damped structures. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 14(4), 681-692.
[9] Love, J. S., Smith, A. W., Haskett, T. C., Robinson, J. K., & Morava, B. (2023). Tuned Mass Dampers in Tall Buildings: A Practical Performance-Based Design Approach. Practice Periodical on Structural Design and Construction, 28(1), 04022053.
[10] Li, Q. S., Zhi, L. H., Tuan, A. Y., Kao, C. S., Su, S. C., & Wu, C. F. (2011). Dynamic behavior of Taipei 101 tower: Field measurement and numerical analysis. Journal of Structural Engineering, 137(1), 143-155.
[11] Palomera-Arias, R. (2005). Passive electromagnetic damping device for motion control of building structures (Doctoral dissertation, Massachusetts Institute of Technology).
[12] Cassidy, I. L., Scruggs, J. T., Behrens, S., & Gavin, H. P. (2011). Design and experimental characterization of an electromagnetic transducer for large-scale vibratory energy harvesting applications. Journal of Intelligent Material Systems and Structures, 22(17), 2009-2024.
[13] Tang, X., & Zuo, L. (2011). Enhanced vibration energy harvesting using dual-mass systems. Journal of sound and vibration, 330(21), 5199-5209.
[14] Tang, X., & Zuo, L. (2012). Vibration energy harvesting from random force and motion excitations. Smart Materials and Structures, 21(7), 075025.
[15] Tang, X., & Zuo, L. (2012). Simultaneous energy harvesting and vibration control of structures with tuned mass dampers. Journal of Intelligent Material Systems and Structures, 23(18), 2117-2127.
[16] Zhu, S., Shen, W. A., & Xu, Y. L. (2012). Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing. Engineering Structures, 34, 198-212.
[17] Zuo, L., & Cui, W. (2013). Dual-functional energy-harvesting and vibration control: electromagnetic resonant shunt series tuned mass dampers. Journal of vibration and acoustics, 135(5), 051018.
[18] Shen, W., & Zhu, S. (2015). Harvesting energy via electromagnetic damper: Application to bridge stay cables. Journal of Intelligent Material Systems and Structures, 26(1), 3-19.
[19] Hanumantha Rao, T. V., Srinivasa Rao, M. S. S., Apparao, B. V., & Satyanarayana, K. (2014). A study on design and analysis of hybrid vibration damper with energy harvesting and optimal damping effect. Journal of The Institution of Engineers (India): Series C, 95, 97-102.
[20] Smith, M. C. (2002). Synthesis of mechanical networks: the inerter. IEEE Transactions on automatic control, 47(10), 1648-1662.
[21] Chen, M. Z., & Hu, Y. (2019). Inerter and its application in vibration control systems. Beijing: Science Press.
[22] Ma, R., Bi, K., & Hao, H. (2021). Inerter-based structural vibration control: A state-of-the-art review. Engineering Structures, 243, 112655.
[23] Wang, F. C., Hsu, M. S., Su, W. J., & Lin, T. C. (2009). U.S. Patent Application No. 12/220,821.
[24] Chen, M. Z., Papageorgiou, C., Scheibe, F., Wang, F. C., & Smith, M. C. (2009). The missing mechanical circuit element. IEEE Circuits and Systems Magazine, 9(1), 10-26.
[25] Wang, F. C., Hong, M. F., & Lin, T. C. (2011). Designing and testing a hydraulic inerter. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1), 66-72.
[26] Gartner, B. J., & Smith, M. C. (2011). Damping and inertial hydraulic device. US20130037362 A1), patent filed.
[27] De Domenico, D., Deastra, P., Ricciardi, G., Sims, N. D., & Wagg, D. J. (2019). Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings. Journal of the Franklin Institute, 356(14), 7626-7649.
[28] Gonzalez‐Buelga, A., Clare, L. R., Neild, S. A., Burrow, S. G., & Inman, D. J. (2015). An electromagnetic vibration absorber with harvesting and tuning capabilities. Structural Control and Health Monitoring, 22(11), 1359-1372.
[29] John, E. D., & Wagg, D. J. (2019). Design and testing of a frictionless mechanical inerter device using living-hinges. Journal of the Franklin Institute, 356(14), 7650-7668.
[30] Chen, M. Z., Papageorgiou, C., Scheibe, F., Wang, F. C., & Smith, M. C. (2009). The missing mechanical circuit element. IEEE Circuits and Systems Magazine, 9(1), 10-26.
[31] Marian, L., & Giaralis, A. (2014). Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics, 38, 156-164.
[32] De Domenico, D., & Ricciardi, G. (2018). An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI). Earthquake engineering & structural dynamics, 47(5), 1169-1192.
[33] Giaralis, A., & Taflanidis, A. A. (2018). Optimal tuned mass‐damper‐inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria. Structural Control and Health Monitoring, 25(2), e2082.
[34] Pietrosanti, D., De Angelis, M., & Basili, M. (2017). Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI). Earthquake Engineering & Structural Dynamics, 46(8), 1367-1388.
[35] Petrini, F., Giaralis, A., & Wang, Z. (2020). Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting. Engineering Structures, 204, 109904.
[36] Almazán, J. L., Juan, C., Inaudi, J. A., López-García, D., & Izquierdo, L. E. (2007). A bidirectional and homogeneous tuned mass damper: A new device for passive control of vibrations. Engineering Structures, 29(7), 1548-1560.
[37] 章靖(2015)。雙擺長調諧質量阻尼器之減振效益與人行橋振動分析之研究。國立台灣大學工學院土木工程學系碩士論文。
[38] Taha, A. E., Elias, S., Matsagar, V., & Jain, A. K. (2019). Seismic response control of asymmetric buildings using tuned mass dampers. The Structural Design of Tall and Special Buildings, 28(18), e1673.
[39] Matta, E. (2019). Modeling and design of bidirectional pendulum tuned mass dampers using axial or tangential homogeneous friction damping. Mechanical systems and signal processing, 116, 392-414.
[40] Matta, E. (2019). A novel bidirectional pendulum tuned mass damper using variable homogeneous friction to achieve amplitude‐independent control. Earthquake Engineering & Structural Dynamics, 48(6), 653-677.
[41] 凃佳瑋(2012)。建築結構安裝含雙向單擺之多重調諧質量阻尼器設計實務研究。國立聯合大學土木與防災工程學系碩士論文。
[42] 李奕寰(2020)。具飛輪之電磁式隔震系統之抗震研究。國立高雄科技大學營建工程系碩士班碩士論文。
[43] 陳鈺靜(2017)。電磁式多元調節質量阻尼器應用於結構減振與儲能之振動台試驗。國立中興大學土木工程研究所研究論文。
[44] 林子婷(2017)。雙向具慣質電磁式調諧質量阻尼器之最佳化設計與振動台試驗。國立中興大學土木工程研究所研究論文。
[45] Lin, C. S., & Lin, G. L. (2023). Application of electromagnetic tuned mass damper with flywheels for controlling building structure vibration. Earthquake Engineering & Structural Dynamics, 52(12), 3788-3810.
[46] 龍豪佑(2013)。多元調諧質量阻尼器之機械設計製造與振動台試驗。國立中興大學土木工程研究所碩士論文。
[47] 王子龍,田利,金樹,曹丹京,張麗娟,王騫,劉小坡(2013)。實用新型專利(CN 202954450 U)。山東電力工程諮詢院有限公司。250014山東省濟南市歷下區閔子騫路106號。
[48] 田利,王騫,馬瑞升,俞琪琦(2013)。發明專利申請(CN 103306394 A)。山東大學。 250061山東省濟南市歷下區經十路17923號。
[49] 李學文(2020)。具雙線性遲滯行為之隔震系統性能設計方法。國立臺灣科技大學營建工程系碩士學位論文。
[50] 王聖閔(2021)。具多重控制性能斜面滾動隔震支承之設計、分析與試驗研究。國立臺灣科技大學營建工程系碩士學位論文。
[51] 曾宇謙(2023)。基於直接量測試驗探討摩擦單擺支承之尺寸效應與分析模型。國立臺灣科技大學營建工程系碩士學位論文。
[52] 賴以安(2022)。由斜面滾動隔震支承平面耦合探討至結合慣質設計之分析試驗研究。國立臺灣科技大學營建工程系碩士學位論文。
[53] 吳宗軒(2023)。具慣質曲面滾動支承應用於隔減震設計之數值分析與試驗驗證。國立臺灣科技大學營建工程系碩士學位論文。
[54] Lai, Y. A., Wang, S. J., & Hsu, T. Y. (2023). Acceleration‐Based Design Procedure for Sloped Rolling‐Type Bearings with an Added Rotational Inerter. Structural Control and Health Monitoring, 2023(1), 3694995.
[55] 洪大智(2017)。旋轉馬達電磁式多元調諧質量阻尼器之結構減振。國立中興大學土木工程研究所碩士論文。
[56] Small-angle approximations (2022, November 4). In Wikipedia, the free encyclopedia. Retrieved June 12, 2024, from https://zh.wikipedia.org/wiki/%E5%B0%8F%E8%A7%92%E5 %BA%A6%E8%BF%91%E4%BC%BC
[57] Simple Harmonic Motion (2023, August 20). In Wikipedia, the free encyclopedia. Retrieved June 12, 2024, from https://zh.wikipedia.org/zhtw/%E7%B0%A1%E8%AB%A7%E 9%81%8B%E5%8B%95
[58] Nagase, T., & Hisatoku, T. (1992). Tuned‐pendulum mass damper installed in crystal tower. The Structural Design of Tall Buildings, 1(1), 35-56.
[59] Raboud, D., & Westover L. (2024). Vibration and sound. Retrieved from https://engcourses-uofa.ca
指導教授 林志軒(Chih-Shiuan Lin) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明