博碩士論文 111621022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.217.237.68
姓名 劉豪聯(Hou-Lun Lao)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 宜蘭地形迴流與冬季降雨機制–無人機觀測與分析
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 利用AERONET資料解析中南半島地區氣膠種類及成分
★ 氣膠對臺灣北部暖雲微物理和毛雨的影響★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers
★ 氣膠對臺灣中部平原夏季降水日變化之影響★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋
★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation
★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣秋冬季期間,蘭陽平原南側常有強降雨發生,當對地居民生活與農業活動等方面都相當的影響。早在1950年,樺澤實(1950)提及宜蘭地區的特殊降雨特徵,並就宜蘭地形提出可能的降雨機制之概念模型;歷經過去七十多年,科學家對於此研究議題利用模式模擬或資料分析奠定了一定的科學理解,但仍缺乏完整的大氣觀測實驗提供詳細的三維觀測作為驗證。因此自2020年開始,一系列的宜蘭劇烈降雨實驗(YESR)提供了無人機、探空、雷達和剖風儀等密集垂直觀測資料,致力於探索與暸解宜蘭的降雨機制。本研究主要利用宜蘭劇烈降雨實驗期間無人機垂直密集觀測資料(共82趟),並整合分析中央氣象署氣象觀測站過去2018至2024年秋冬季的長期資料(共721天),探討宜蘭地區於冬季季風背景下的降雨與風場特徵,並利用垂直觀測資料構建在無綜觀系統影響下蘭陽平原南側的降雨機制。
以桃源谷和鶯子嶺測站的平均作為宜蘭地區的背景場,並以背景風向劃分觀測時間段,選用背景風向在北至東風(冬季季風)的觀測時間段作為研究對象。統計結果顯示,地形迴流的影響範圍為大福測站以南及蘇澳測站以北,其厚度最高可達800m或以上,1100m以下;在背景風向為東北偏東時為地形迴流最容易生成的環境條件,蘭陽平原中和南部的西風佔比為42%至63%。利用宜蘭劇烈降雨實驗中無人機密集垂直觀測資料,進一步對蘭陽平原南側的降雨垂直結構進行動力、熱力及溼福祿數分析,發現在不同背景風向下蘭陽平原南側由不同的降雨機制所主導︰在背景風向為北風時,風速為9至11 m s-1,降雨主要受到地形抬升影響,並同時高背景風速抑制對流往上遊地區移動,因此降雨區域主要集中在中央山脈(降雨發生率大於50%)。而在背景風向在東風時,風速為6至9 m s-1,背景風因受雪山山脈的阻擋而導致近地面產生的地形迴流,在動力上於宜蘭沿岸外海與背景風輻合,熱力上於內陸與背景風產生約1200m厚的絕對不穩定環境,為對流提供有利的降雨環境。當背景風為東北風時,風速為6至9 m s-1,受到地形抬升與地形迴流的交互作用下,宜蘭地區出現頻率最高持續性強降雨(降雨發生率為30%至60%),對流首先會因地形抬升而在中央山脈生成,隨後對流所產生的陣鋒鋒面與背景風輻合並生成新對流,由此對流逐漸往迎風面上游區域移動;同時,地形迴流會有助於外海的對流的持續發展,而外海對流在隨背景風平流至中央山脈後會因地形抬升而增強,令蘭陽平原中與南部出現持續且劇烈的降雨;因此,在東北背景風的條件下,地形抬升與地形迴流降雨維持機制的複合作用令宜蘭地區皆有最多且強的降雨發生。
總結而言,宜蘭地區降雨機制複雜,本研究發現地形分別以地形抬升和地形迴流的方式幫助對流發展,背景風向決定蘭陽平原南側的降雨機制,而背景風速決定了地形降雨的類型。北風背景風下,蘭陽平原南側為地形抬升主導,降雨主要集中在中央山脈區域;東北風背景風下,在地形抬升與地形迴流維持機制的複合作用下宜蘭地區容易發生持續且強的降雨,主要降雨區域為蘭陽平原中與南部;東風背景風下,因外海對流範圍覆蓋整個宜蘭地區,因此宜蘭地區降雨發生率均一,而地形迴流分別以動力和熱力為對流提供有利條件,令對流有效發展。
摘要(英) During autumn and winter, the southern Lanyang Plain in Taiwan frequently experiences heavy rainfall, significantly impacting local residents and agricultural activities. As early as 1950, Kabasawa(1950) identified unique rainfall characteristics in Yilan and proposed a conceptual model of possible rainfall mechanisms related to Yilan′s topography. Despite over seventy years of research utilizing model simulations and data analysis, a comprehensive understanding still lacks detailed three-dimensional observational data. Since 2020, the Yilan Experiments of Severe Rainfall (YESR) have provided intensive vertical observations using UAVs, soundings, radars, and wind profilers, aiming to explore and understand the rainfall mechanisms in Yilan. This study primarily uses vertical intensive observations from UAVs (82 flights) during YESR and integrates long-term data from the Central Weather Bureau′s meteorological stations from autumn and winter seasons of 2018 to 2024 (total 721 days). It investigates rainfall and wind field characteristics in Yilan under winter monsoon condition, constructing a rainfall mechanism model for the southern Lanyang Plain in the absence of synoptic systems.
Using the average data from Taoyuangu and Yingziling stations as the background field for Yilan, the study segments observation periods based on background wind directions, focusing on periods with wind directions from 350 to 110 degrees (winter monsoon). Statistical results indicate the influence range of topographic return flow spans south of Dafu station and north of Su’ao station, with a maximum thickness of 800m or more, up to 1100m. The most favorable conditions for topographic return flow formation occur with background wind directions between 50 and 70 degrees, with westerly winds dominating 42% to 63% of the time in central and southern Lanyang Plain.
Further analysis using intensive vertical observations from the YESR reveals distinct rainfall mechanisms in the southern Lanyang Plain under different background wind directions. With background wind directions from 350 to 30 degrees (north wind) and wind speeds of 9 to 11 m s-1, rainfall is primarily influenced by orographic lifting, with high background wind speeds suppressing upstream convective movement, concentrating rainfall over the Central Mountain Range (rainfall occurrence rate > 50%). When the background wind is from 70 to 110 degrees (east wind) with speeds of 6 to 9 m s-1, background wind is blocked by the Xu Mountain Range, creating near-surface terrain-blocking flows. It converges with background wind offshore and create the absolute instability layer inland (with a thickness of about 1200m), provides favorable conditions for convective rainfall. During background wind directions of 30 to 70 degrees (northeast wind) with speeds of 6 to 9 m s-1, the interaction of orographic lifting and terrain-blocking flows leads to the highest frequency of intense, sustained rainfall (rainfall occurrence rate of 30% to 60%) in Yilan. Initial convective activity generated by orographic lifting over the Central Mountain Range is followed by new convection formed by the interaction of gust fronts and background winds, progressively moving upstream. Concurrently, terrain-blocking flows aids in the continuous development of offshore convection, which is enhanced by orographic lifting when advected over the Central Mountain Range, resulting in sustained heavy rainfall in central and southern Lanyang Plain. Therefore, under northeast wind conditions, the combined effects of orographic lifting and return flow mechanisms lead to the most intense and frequent rainfall in Yilan.
In summary, rainfall mechanisms in Yilan are complex. This study finds that topography aids convective development through orographic lifting and terrain-blocking flows, with background wind direction determining the rainfall mechanism in the southern Lanyang Plain, and background wind speed influencing the type of orographic rainfall. Under north wind conditions, orographic lifting dominates, concentrating rainfall over the Central Mountain Range. Under northeast wind conditions, the interaction between orographic lifting and terrain-blocking flows cause persistent and intense rainfall in central and southern Lanyang Plain. Under east wind conditions, offshore convection uniformly affects the entire Yilan, with terrain-blocking flows dynamically and thermally supporting convective development.
關鍵字(中) ★ 地形降雨
★ 無人機觀測
★ 地形迴流
關鍵字(英) ★ orographic rainfall
★ UAV observation
★ terrain-blocking flows
論文目次 一、 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-3研究動機 12
1-4研究目的 12
二、研究方法與資料 14
2-1氣象署大氣觀測站資料 14
2-2大氣無人機觀測資料 20
2-3無人機分析不穩定天氣之方法學 23
2-4宜蘭地區環境氣象場定義 25
2-5溼福祿數的定義與計算 29
三、結果與討論 30
3-1 宜蘭地區地形迴流的有利環境條件 30
3-2 不同背景風向下地形效應與蘭陽平原降雨之關係 34
3-3 不同背景風向下宜蘭平均風場與降雨分布 39
3-4 YESR期間之無人機觀測個案討論 47
3-4-1 東風環境風場下的降雨機制 47
3-4-2 東北風背景風場下的降雨機制 63
3-4-3 東北風背景下外海對流移入的影響 72
3-4-4 強北風環境風場下的降雨機制 79
四、結論與未來展望 93
4-1 結論 93
4-2 未來展望 95
參考文獻 96
參考文獻 Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046-1053.
Chu, C., & Lin, Y. (2000). Effects of Orography on the Generation and Propagation of Mesoscale Convective Systems in a Two-Dimensional Conditionally Unstable Flow, Journal of the Atmospheric Sciences, 57(23), 3817-3837.
Lundquist, J. D., Minder, J. R., Neiman, P. J., & Sukovich, E. (2010). Relationships between Barrier Jet Heights, Orographic Precipitation Gradients, and Streamflow in the Northern Sierra Nevada. Journal of Hydrometeorology, 11(5), 1141-1156.
Ramelli, F., Henneberger, J., David, R. O., Lauber, A., Pasquier, J. T., Wieder, J., Bühl, J., Seifert, P., Engelmann, R., Hervo, M., and Lohmann, U. (2021). Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley, Atmos. Chem. Phys., 21, 5151–5172.
Neiman P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson (2002). The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 1468–1492.
Su, S. H., Chang, Y. H., Liu, C. H., Chen, W. T., Chang, W. Y., Chen, J. P., Chen, W. N., Chung, K. S., Hou, J. P., Hsieh, M. K., Jang, Y. S., Kuo, H. C., Lee, Y. C., Lin, P. L., Lin, P. Y., Lin, P. H., Lo, M. H., Wang, S. H., Wu, C. M., ... Yang, M. J. (2022). Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020). Quarterly Journal of the Royal Meteorological Society, 148(745), 1663-1682.
樺澤實(1950),第2 種地形性降雨の實例について,気象庁研究時報,第二卷,第三號,p65-69。
李金萬、陳泰然(1983),台灣北部地區1980年11月19日異常降水個案研究,大氣科學,10(1),25-38。
陳泰然、李金萬、劉廣英(1980),冬季東北季風影響下之台灣北部異常降水之初步研究,大氣科學,7(1),73-84。
陳盈曄(2000),宜蘭地區秋冬季降雨特性之研究(碩士論文),國立中央大學大氣物理研究所,桃園。
葉嘉靜(2003),宜蘭地區秋冬季豪大雨特性之研究(碩士論文),國立中央大學大氣物理研究所,桃園。
張耀升(2004),宜蘭地區豪雨個案之研究(博士論文),國立中央大學大氣物理研究所,桃園。
江宙君(2007),海陸風對台灣沿海地區空氣品質之影響(碩士論文),國立中央大學大氣物理研究所,桃園。
蔡宗樺(2012),利用WRF模式探討台灣東部海上對流線之個案研究(碩士論文),國立中央大學大氣物理研究所,桃園。
蘇世顥、劉清煌(2021),2020 年宜蘭劇烈降雨實驗(2020 YESR)簡介,氣象學會62期會刊專題。
吳若瑜(2023),東北季風環境下宜蘭冬季降雨特徵之地形效應(碩士論文),國立臺灣大學大氣科學系,台北。
王聖翔、柯立晉、潘巧玲、劉豪聯、李育棋、游志淇、邱思翰(2023),新一代低層大氣無人機探空系統,前瞻科技與管理,12(1),38-59。
指導教授 王聖翔(Sheng-Hsiang Wang) 審核日期 2024-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明