博碩士論文 111322007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.149.255.239
姓名 朱庭儀(Ting-Yi Chu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 探討物質點法應用於極限條件下之結構反應
(Simulation of Structural Responses Under Extreme Conditions with The Material Point Method)
相關論文
★ 多孔材料幾何形狀與力學性質關係之探討★ 利用物質點法探討金屬板靶於子彈衝擊下之行為
★ 利用積層製造技術及物質點法探討IPU材料特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 長久以來,有限元素法(Finite Element Method, FEM)在固體力學問題的分析中得到了廣泛應用與驗證。然而,當面臨爆炸、高速撞擊、複雜幾何結構、裂紋動態擴展等大變形問題時,有限元素法常會遇到模型建構困難和網格需要重新分配等挑戰,而物質點法具有易於建構模型和處理大變形與運動問題的特性,近年來已成為處理前述問題的熱門數值方法。
本論文主要利用廣義插值物質點法( Generalized Interpolation Material Point Method, GIMP) 探討物質點法在極限狀態下和結構穩定性兩類問題中的適用性和可靠性。極限狀態問題包含爆炸和高速撞擊,這些情況涉及劇烈的大變形和高應變率,由於廣義插值物質點法能夠很好地處理這些複雜的現象,因此在這些極端條件下顯示出其獨特的優勢。此外,結構不穩定問題,如由微小偏心引發的挫屈現象,也是一個難以模擬的挑戰。
在研究方法上,針對極限狀態下的高應變率問題,本研究進行了不同速度和網格劃分的收斂性分析;對於結構穩定性問題,則採用柱挫屈問題進行數值模擬,研究了不同偏心率對試體荷載反應的影響,並比較了三種應力截取方法之準確性。
結果顯示,在高應變率條件下,確保變形速度低於材料應力波之波速,物質點法能夠準確模擬材料的應力-應變行為。隨著網格細密程度的提高,模擬結果更接近理論解,但計算複雜性和時間成本也隨之增加。此外,研究表明在不同偏心率下,試體固接處的反力曲線更接近理論解,證實了物質點法在結構挫屈現象分析中的可靠性。
本研究證實了物質點法在高應變率和穩定性問題中的應用潛力,並為未來的數值模擬提供了參考建議,有助於提高工程設計和分析的準確性和可靠性。
摘要(英) The Finite Element Method (FEM) has long been widely applied and validated in the analysis of solid mechanics problems. However, when faced with large deformation problems such as explosions, high-speed impacts, complex geometries, and dynamic crack propagation, FEM often encounters challenges such as model construction difficulties and the need for remeshing. In recent years, the Material Point Method (MPM) has become a popular numerical method for addressing these issues due to its ease of model construction and its ability to handle large deformation and motion problems.
This thesis primarily utilizes the Generalized Interpolation Material Point Method (GIMP) to explore the applicability and reliability of MPM in two types of problems: extreme conditions and structural stability. Extreme condition problems include explosions and high-speed impacts, which involve severe large deformations and high strain rates. Due to GIMP′s capability to effectively handle these complex phenomena, it demonstrates unique advantages under such extreme conditions. Additionally, structural instability problems, such as buckling induced by slight eccentricity, also pose a significant challenge for simulation.
In terms of research methods, this study conducts convergence analysis with different speeds and mesh divisions for high strain rate problems under extreme conditions. For structural stability problems, the buckling of columns is numerically simulated to investigate the impact of different eccentricities on the load response of specimens, and the accuracy of three stress extraction methods is compared.
The results show that under high strain rate conditions, ensuring the deformation speed is lower than the material′s stress wave velocity allows MPM to accurately simulate the material′s stress-strain behavior. As the mesh refinement increases, the simulation results become closer to theoretical solutions, although computational complexity and time costs also increase. Furthermore, the study indicates that under different eccentricities, the reaction force curves at the fixed ends of the specimens closely match theoretical solutions, confirming the reliability of MPM in analyzing structural buckling phenomena.
This research confirms the application potential of MPM in high strain rate and stability problems and provides reference suggestions for future numerical simulations, contributing to improving the accuracy and reliability of engineering design and analysis.
關鍵字(中) ★ 物質點法
★ 廣義插值物質點法
★ 高應變率
★ 挫屈
關鍵字(英) ★ Material Point Method
★ Generalized Interpolation Material Point Method
★ High strain rates
★ Buckling
論文目次 目錄

摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
符號表 xi
一、緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究流程 3
二、文獻回顧 5
2.1 拉格朗日法介紹 5
2.2 歐拉法介紹 6
2.3 物質點法介紹 6
2.4 廣義插值物質點法介紹 7
2.5 高應變率介紹 8
三、研究方法 10
3.1 物質點法 10
3.1.1 物體運動和變形 10
3.1.2 物體的控制方程式在物質點法之應用 11
3.1.3 質量守恆方程式 11
3.1.4 動量守恆方程式 12
3.1.5 物質點法的理論基礎與計算流程 13
3.2 廣義插值物質點法 19
3.3 彈塑性組成律 27
3.4 高應變率問題 28
3.5 柱挫屈問題 28
四、研究結果 30
4.1 高應變率問題 30
4.1.1 試體模型、參數及分析設定 31
4.1.2 受力行為初步驗證 32
4.1.3 速度邊界效應探討 35
4.2 高應變率問題之收斂性分析 39
4.2.1 細密網格劃分之分析結果 40
4.2.2 尺寸收斂性分析比較 43
4.3 穩定性問題 47
4.3.1 試體模型及參數 47
4.3.2 偏心率之差異比較 48
4.3.3 應力記錄方式之差異比較 51
4.3.4 速度邊界和應力紀錄位置之差異比較 54
4.4 穩定性問題之收斂性分析 58
五、結論與建議 60
5.1 結論 60
5.2 未來展望 61
參考資料 62
參考文獻 參考資料
[1] Fries, T. P., & Belytschko, T. (2010). The extended/generalized finite element method: an overview of the method and its applications. International journal for numerical methods in engineering, 84(3), 253-304.
[2] Chen, Y., Lee, J. D., & Eskandarian, A. (2006). Meshless methods in solid mechanics (Vol. 9). New York: Springer.
[3] Verboncoeur, J. P. (2005). Particle simulation of plasmas: review and advances. Plasma Physics and Controlled Fusion, 47(5A), A231.
[4] Chen, Z., & BRANNON, R. M. (2002). An evaluation of the material point method (No. SAND2002-0482). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia National Lab.(SNL-CA), Livermore, CA (United States).
[5] Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., & Selle, A. (2016). The material point method for simulating continuum materials. In Acm siggraph 2016 courses (pp. 1-52).
[6] 王斌, 馮夏庭, 潘鵬志, & 李邵軍. (2017). 物質點法在邊坡穩定性評價中的應用研究. 岩石力學與工程學報, 36(9), 2146-2155.
[7] De Vaucorbeil, A., Nguyen, V. P., Sinaie, S., & Wu, J. Y. (2020). Material point method after 25 years: theory, implementation, and applications. Advances in applied mechanics, 53, 185-398.
[8] Stomakhin, A., Schroeder, C., Chai, L., Teran, J., & Selle, A. (2013). A material point method for snow simulation. ACM Transactions on Graphics (TOG), 32(4), 1-10.
[9] Bardenhagen, S. G., & Kober, E. M. (2004). The generalized interpolation material point method. Computer Modeling in Engineering and Sciences, 5(6), 477-496.
[10] Nawar, M., Salim, H., Newberry, M., & El-Sisi, A. (2021). High strain rate response of laminated glass interlayer materials. Construction and Building Materials, 299, 123934.
[11] Zhang, X., Liu, H., Maharaj, C., Zheng, M., Mohagheghian, I., Zhang, G., ... & Dear, J. P. (2020). Impact response of laminated glass with varying interlayer materials. International journal of impact engineering, 139, 103505.
[12] El-Sisi, A., Newberry, M., Knight, J., Salim, H., & Nawar, M. (2022). Static and high strain rate behavior of aged virgin PVB. Journal of Polymer Research, 29(2), 39.

[13] Liu, J. C., Yang, S. G., Yang, Y., Fang, Q., Rong, C., & Gan, J. P. (2020). Experimental study of the dynamic response of PVB laminated glass under vented explosion loads of methane–air mixtures. International Journal of Impact Engineering, 143, 103588.
[14] Guo, Y. J., & Nairn, J. A. (2006). Three-dimensional dynamic fracture analysis using the material point method. Computer Modeling in Engineering and Sciences, 16(3), 141.
[15] 張雄, 廉艷平, 劉岩, 周旭. (2013). 物質點法. 清華大學計算力學叢書
[16] 張維程. (2023). 以物質點法及廣義插值物質點法進行衝擊波傳問題之比較研究. 中原大學土木工程學系學位論文, 2023, 1-96.
[17] Wang, D., Lee, J., Holland, K., Bibby, T., Beaudoin, S., & Cale, T. (1997). Von mises stress in chemical‐mechanical polishing processes. Journal of the Electrochemical Society, 144(3), 1121.
[18] Timoshenko, S. (1983). History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. Courier Corporation.
[19] Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and simulation in materials science and engineering, 18(1), 015012.
[20] ASTM Subcommittee D20. 10 on Mechanical Properties. (1998). Standard Test Method for Tensile Properties of Plastics. American Society for Testing and Materials.
[21] Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR. Impact dynamics. New York: Wiley; 1982.
[22] Chen, Z., Su, Y. C., Rajendran, A. M., Su, H., Liu, Y., & Jiang, S. (2020). Study of constituent effect on the failure response of fiber reinforced composites to impact loading with the material point method. Composite Structures, 252, 112751.
指導教授 蘇昱臻(Yu-Chen Su) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明