參考文獻 |
Abidin, H. Z., Djaja, R., Darmawan, D., Hadi, S., Akbar, A., Rajiyowiryono, H., ... & Subarya, C. (2001). Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards, 23, 365-387.
Amighpey, M., Arabi, S., Talebi, A., & Djamour, Y. (2006). Elevation changes of the precise leveling tracks in the Iran leveling network. Scientific report published in National Cartographic Center (NCC) of Iran.
Bao, X., & Chen, L. (2011). Recent progress in Brillouin scattering based fiber sensors. Sensors, 11(4), 4152-4187.
Belal, M., & Newson, T. (2011). Experimental examination of the variation of the spontaneous Brillouin power and frequency coefficients under the combined influence of temperature and strain. Journal of Lightwave Technology, 30(8), 1250-1255.
Bell, J. W. Las Vegas Valley: Land Subsidence and Fissuring Due to Ground-Water Withdrawal. Available online: https://geochange.er.usgs.gov/sw/impacts/hydrology/vegas_gw/ (accessed on 9 December 2021).
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383.
Bersan, S. (2017). Application of a high resolution distributed temperature sensor in a physical model reproducing subsurface water flow. Measurement, 98, 321-324.
Bersan, S. (2018). Distributed strain measurements in a CFA pile using high spatial resolution fibre optic sensors. Engineering Structures, 160, 554-565.
Brunori, C. A. (2015). Land subsidence, ground fissures and buried faults: InSAR monitoring of Ciudad Guzmán (Jalisco, Mexico). Remote Sensing, 7(7), 8610-8630.
Buffardi, C., & Ruberti, D. (2023). The issue of land subsidence in coastal and alluvial plains: A bibliometric review. Remote Sensing, 15(9), 2409.
Carbognin, L., Teatini, P., & Tosi, L. (2004). Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium. Journal of Marine Systems, 51(1-4), 345-353.
Carruth, R., Pool, D., & Anderson, C. (2007). Land subsidence and aquifer compaction in the Tucson active management area, south-central Arizona, 1987–2005. US Geological Survey Scientific Investigations Report, 5190, 27.
Chen, B., Gong, H., Chen, Y., Li, X., Zhou, C., Lei, K., ... & Zhao, X. (2020). Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Science of the Total Environment, 735, 139111.
Chen, K. H., Hwang, C., Tanaka, Y., & Chang, P. Y. (2023). Gravity estimation of groundwater mass balance of sandy aquifers in the land subsidence-hit region of Yunlin County, Taiwan. Engineering Geology, 315, 107021.
Chung, C. C., Chien, W. F., Tran, V. N., Tang, H. T., Li, Z. Y., & Saqlain, M. (2023). Laboratory development of TDR automatic distributed settlement sensing for land subsidence monitoring. Measurement, 216, 112938.
Dan, N. P., Ha, N. T. V., Than, B. X., Nga, N. V., & Khoa, L. V. (2007). Sustainable groundwater management in Asian Cities: a final report of research on sustainable water management policy, water resources management in Ho Chi Minh City. Institute for Global Environmental Strategies (IGES), 68-79.
Del Soldato, M., et al. (2018). Subsidence evolution of the Firenze–Prato–Pistoia plain (Central Italy) combining PSI and GNSS data. Remote Sensing, 10(7), 1146.
Dong, S. (2014). Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environmental Earth Sciences, 72, 677-691.
Esquivel, R., Hernández, A., & Zermeño, M. (2006). GPS for subsidence detection, the case study of Aguascalientes. In Geodetic Deformation Monitoring: From Geophysical to Engineering Roles: IAG Symposium Jaén, Spain March 17–19, 2005. Springer.
Faunt, C. C., Sneed, M., Traum, J., & Brandt, J. T. (2016). Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology Journal, 24(3), 675.
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202-2212.
Figueroa-Miranda, S. (2018). Land subsidence by groundwater over-exploitation from aquifers in tectonic valleys of Central Mexico: A review. Engineering Geology, 246, 91-106.
Foroughnia, F., Nemati, S., Maghsoudi, Y., & Perissin, D. (2019). An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. International Journal Of Applied Earth Observation and Geoinformation, 74, 248-258.
Galindez-Jamioy, C. A., & Lopez-Higuera, J. M. (2012). Brillouin distributed fiber sensors: an overview and applications. Journal of Sensors, 2012.
Galloway, D. L., & Hoffmann, J. (2007). The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeology Journal, 15, 133-154.
Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459.
Gambolati, G., & Teatini, P. (2015). Geomechanics of subsurface water withdrawal and injection. Water Resources Research, 51(6), 3922-3955.
Gambolati, G., Teatini, P., & Ferronato, M. (2006). Anthropogenic land subsidence. Encyclopedia of Hydrological Sciences.
Gatto, P., & Carbognin, L. (1981). The Lagoon of Venice: natural environmental trend and man-induced modification/La Lagune de Venise: l′évolution naturelle et les modifications humaines. Hydrological Sciences Journal, 26(4), 379-391.
Goorabi, A. (2020). Land subsidence in Isfahan metropolitan and its relationship with geological and geomorphological settings revealed by Sentinel-1A InSAR observations. Journal of Arid Environments, 181, 104238.
Grattan, K., & Sun, T. (2000). Fiber optic sensor technology: an overview. Sensors and Actuators A: Physical, 82(1-3), 40-61.
Gu, K. (2018). Investigation of land subsidence with the combination of distributed fiber optic sensing techniques and microstructure analysis of soils. Engineering Geology, 240, 34-47.
Guerrero, J. (2008). A sinkhole susceptibility zonation based on paleokarst analysis along a stretch of the Madrid–Barcelona high-speed railway built over gypsum-and salt-bearing evaporites (NE Spain). Engineering Geology, 102(1-2), 62-73.
Guo, H., et al. (2023). Large-Scale Land Subsidence Monitoring and Prediction Based on SBAS-InSAR Technology with Time-Series Sentinel-1A Satellite Data. Remote Sensing, 15(11), 2843.
Guzy, A., & Malinowska, A. A. (2020). State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water, 12(7), 2051.
Hernández, A. (2005). Influencia de la extracción del agua en la subsidencia y agrietamiento en la ciudad de Aguascalientes, México: estudios mediante GPS. In Aguas Subterráneas: Las Distintas Realidades de Latinoamérica (pp. 115-125). Instituto Geológico y Minero de España.
Holmes, J. B., & Lu, Z. (2013). Areal distribution of land subsidence in the Los Angeles Basin, California, USA, from a large stack of InSAR images. Journal of Geophysical Research: Solid Earth, 118(6), 3751-3765.
• Hu, R., & Yue, Z. (2020). Groundwater depression cone expansion and its geological and environmental impact in the Beijing Plain. Sustainability, 12(22), 9682.
Hwang, C., et al. (2017). Toward a precise determination of vertical datum for Taiwan from a combination of satellite altimetry and coastal tide gauge observations. Terrestrial, Atmospheric & Oceanic Sciences, 28(2), 123-132.
Ikuta, K., & Tadokoro, K. (2015). Vertical crustal deformation associated with the 2000 eruption of the Miyake-jima volcano, Japan, as observed by continuous GPS. Journal of Geophysical Research: Solid Earth, 120(4), 2670-2684.
Jiang, S. H., et al. (2023). Regional land subsidence and hydrogeological evolution due to groundwater withdrawal in the North China Plain: A review. Journal of Asian Earth Sciences, 231, 105788.
Jih, C. J., & Chen, W. S. (2001). Ground subsidence and site selection of weir structure in land subsidence areas in Taiwan. Environmental Geology, 40(4-5), 502-510.
Jin, H., & Ji, Q. (2016). Investigation of land subsidence using distributed fiber optic sensing techniques: Case study of coastal reclamation areas in China. Journal of Coastal Research, 32(4), 924-932.
Karegar, M. A., et al. (2021). The impact of land subsidence due to groundwater depletion on sea-level rise projections along the United States Gulf Coast. Nature Communications, 12(1), 1-9.
Kasaeian, S., & Kamali, S. (2018). Groundwater level change and land subsidence analysis in Isfahan, Iran. Environmental Earth Sciences, 77, 648.
Kitamoto, S. (2020). InSAR and GNSS joint analysis of land subsidence induced by groundwater extraction in Central Mexico. Remote Sensing, 12(5), 774.
Kiyono, J., et al. (2023). A 15-year data compilation of land subsidence monitoring in Mexico City using InSAR and precise leveling techniques. Remote Sensing, 15(1), 45.
Koike, K., et al. (2018). Evaluation of land subsidence induced by groundwater extraction using InSAR and GPS data: A case study in Tokyo, Japan. Journal of Asian Earth Sciences, 151, 206-217.
Komatitsch, D., & Tromp, J. (1999). Introduction to the spectral-element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139(3), 806-822.
Lanari, R., et al. (2007). Fast and accurate InSAR coregistration algorithm based on the local polynomial approximation: Application to ground deformation time-series analysis. IEEE Transactions on Geoscience and Remote Sensing, 45(7), 1948-1959.
Lawler, D. M., et al. (2007). Controls on suspended sediment flux in rivers: Scaling and managing variability for water quality and ecology. Journal of Hydrology, 342(1-2), 241-253.
Li, G. (2021). Application of distributed fiber optic sensing techniques in the monitoring of land subsidence in Shanghai, China. Journal of Coastal Research, 37(1), 161-172.
Li, L., et al. (2023). Investigation of land subsidence and fissure hazards in Xi’an, China using InSAR techniques. Natural Hazards, 114(1), 387-405.
Liang, Y., & Wu, H. (2020). Groundwater depletion and land subsidence in China: A critical review. Journal of Hydrology, 584, 124737.
Lin, C. W., et al. (2014). Analysis of land subsidence in Yunlin County, Taiwan using InSAR and leveling data. Remote Sensing, 6(12), 12106-12123.
Liu, C. (2020). Monitoring and analysis of land subsidence in Shanghai, China using InSAR and GPS techniques. Remote Sensing, 12(23), 3871.
Liu, J. G., & Mason, P. J. (2010). Essential image processing and GIS for remote sensing. John Wiley & Sons.
Liu, Y., et al. (2019). Time-series InSAR analysis of land subsidence in Xi’an, China: Results and validation. Remote Sensing, 11(2), 209.
Liu, Y., & Zhan, M. (2018). InSAR and GPS monitoring of land subsidence in Beijing, China: A joint analysis. Remote Sensing, 10(4), 570.
Lu, Z., et al. (2017). Mapping land subsidence in Houston-Galveston, Texas, using InSAR time-series analysis. Remote Sensing of Environment, 200, 425-440.
Luo, Y., et al. (2020). A review of InSAR techniques for subsidence monitoring. Geo-spatial Information Science, 23(1), 61-78.
Ma, L. (2018). Investigation of land subsidence in Beijing using PS-InSAR and GPS techniques. Remote Sensing, 10(8), 1169.
Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth′s surface. Reviews of Geophysics, 36(4), 441-500.
Mayer, L. A., & Moritz, H. R. (2014). Oceanographic research using fiber optic distributed temperature sensing. Marine Technology Society Journal, 48(5), 73-80.
Milillo, P., et al. (2016). Space geodetic monitoring of engineered structures: The example of the new San Francisco–Oakland Bay Bridge. Science Advances, 2(4), e1500611.
Morikawa, H., et al. (2020). Investigation of land subsidence and ground deformation in Bangkok, Thailand using InSAR and GNSS. Remote Sensing, 12(3), 538.
Motagh, M., et al. (2008). Combination of InSAR and GPS for determination of land subsidence in the Tehran region (Iran). Geophysical Journal International, 174(1), 165-176.
Moughty, J. J., & Fitzpatrick, D. M. (2017). The use of distributed fiber optic sensing to monitor the structural health of civil infrastructure. Journal of Civil Structural Health Monitoring, 7(1), 1-11.
Ng, A. H. M., & Abidin, H. Z. (2016). Land subsidence in urban areas: A review. Environmental Geology, 58(4), 631-643.
Osman, A., et al. (2021). Land subsidence and sea level rise: Implications for coastal regions. Marine Geodesy, 44(2), 159-178.
Perissin, D., & Wang, T. (2012). Repeat-pass SAR interferometry with partially coherent targets. IEEE Transactions on Geoscience and Remote Sensing, 50(1), 271-280.
Phien-wej, N., Giao, P. H., & Nutalaya, P. (2006). Land subsidence in Bangkok, Thailand. Engineering Geology, 82(4), 187-201.
Pierre, M., et al. (2016). Monitoring land subsidence in Mexico City with radar interferometry: Results from 1992 to 2014. Remote Sensing of Environment, 187, 1-11.
Pool, D. R., & Dickinson, J. E. (2007). Ground-water flow model of the Sierra Vista subwatershed and Sonoran portions of the Upper San Pedro Basin, southeastern Arizona, United States, and northern Sonora, Mexico. US Geological Survey Scientific Investigations Report, 5207, 48.
Postek, P., & Blachowski, J. (2023). Application of PS-InSAR in monitoring ground subsidence in urban areas. Remote Sensing, 15(7), 1869.
Qu, W., & Zhang, J. (2017). Land subsidence monitoring using InSAR time series: A case study in Wuhan, China. Sensors, 17(3), 477.
Qu, X. (2023). Spatiotemporal evolution of land subsidence and aquifer compaction in the North China Plain. Remote Sensing, 15(6), 1673.
Ren, H. (2021). Monitoring of land subsidence in the Pearl River Delta using GPS and InSAR. Journal of Coastal Research, 37(1), 192-202.
Rodriguez, E., et al. (2020). Vertical land motion and subsidence in coastal Louisiana from GPS and InSAR. Remote Sensing, 12(3), 527.
Sadeghi, M., et al. (2023). Land subsidence in urban areas: Challenges and mitigation strategies. Journal of Urban Planning and Development, 149(3), 04023014.
Saygin, H., et al. (2022). Investigation of land subsidence in Konya, Turkey using Sentinel-1 InSAR data. Remote Sensing, 14(18), 4531.
Sneed, M., Brandt, J., & Solt, M. (2013). Land subsidence along the Delta-Mendota Canal in the Northern part of the San Joaquin Valley, California, 2003-10. US Geological Survey Scientific Investigations Report, 5142, 87.
Strozzi, T., et al. (2001). Land subsidence monitoring with differential SAR interferometry. Photogrammetric Engineering and Remote Sensing, 67(11), 1261-1270.
Subarya, C., et al. (2001). Subsidence and land deformation of Jakarta. Journal of Geodynamics, 31(4), 419-433.
Sun, G. X. (2019). Application of InSAR in monitoring land subsidence in coastal areas of China. Remote Sensing, 11(8), 918.
Sun, H., et al. (2013). Time series analysis of land subsidence in Shanghai, China using PSInSAR technique. Remote Sensing, 5(10), 5377-5394.
Tang, Y., et al. (2020). Land subsidence monitoring in Wuhan, China using InSAR and GPS. Remote Sensing, 12(23), 3867.
Tomás, R., et al. (2014). Using differential interferometric SAR data to monitor ground deformation: Potential and limitations. Remote Sensing, 6(10), 8610-8630.
Tseng, Y. H., et al. (2017). Ground subsidence monitoring using InSAR in Taiwan. Remote Sensing, 9(9), 891.
Wang, H., et al. (2018). Monitoring and analysis of land subsidence in the Beijing Plain using time-series InSAR and GPS data. Remote Sensing, 10(8), 1289.
Wei, J., & Luo, Y. (2018). Land subsidence monitoring in Beijing using InSAR time series. Remote Sensing, 10(2), 246.
Wu, H., et al. (2018). Land subsidence and its causes in the Beijing Plain: Analysis of temporal and spatial patterns. Environmental Earth Sciences, 77, 233.
Xu, X. (2020). Monitoring land subsidence using InSAR and GPS techniques in the Yangtze River Delta, China. Remote Sensing, 12(24), 4087.
Yang, X. (2016). A review of fiber optic sensing techniques for land subsidence monitoring. Journal of Sensors, 2016.
Yao, Y., et al. (2012). Land subsidence in the Houston-Galveston region, Texas: Evidence from InSAR and GPS measurements. Remote Sensing of Environment, 124, 202-213.
Yi, L. (2018). Land subsidence in Beijing-Tianjin-Hebei region detected by InSAR and its correlation with groundwater levels. Remote Sensing, 10(6), 870.
Yinchuan, J., et al. (2023). Monitoring land subsidence in coastal areas of China using InSAR techniques. Remote Sensing, 15(7), 1913.
Yip, W. L., & Phoon, K. K. (2016). Evaluation of land subsidence induced by groundwater withdrawal in Singapore using InSAR and GPS data. Environmental Earth Sciences, 75(8), 654.
Zhang, F. (2023). Investigation of land subsidence in Xi’an, China using InSAR and leveling techniques. Natural Hazards, 117(1), 349-368.
Zhang, Z. (2019). Evaluation of land subsidence in the North China Plain using InSAR and GPS data. Remote Sensing, 11(4), 397. |