博碩士論文 111322049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.139.103.57
姓名 邱俊穎(CHUN-YING, CHIU)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 實驗室內評估發泡用水含量於溫拌發泡瀝青混凝土性能之影響
(The Performance of Foamed Warm Mix Asphalt with Various Foaming Water Content)
相關論文
★ Engineering and Environmental Analysis of Maintenance Interval in Taiwan Freeway -the Case of Guanxi Section★ 3D 鋪面調查車之驗證與國道應用分析
★ 營建剩餘土石方物流監控及管理系統之建置★ 透水性鋪面保水與溫差成效之評估 -以中壢市龍慈路為例
★ 以生命週期評估滾筒碴與轉爐石應用於瀝青混凝土之研究★ 傳統單點雷射與2D雷射應用於平坦度之比較研究
★ 鋪面劣化影像自動辨識應用於鋪面巡查精進研究★ 自動化鋪面破壞影像辨識系統導入鋪面破壞維護管理系統之研究
★ 以ETC大數據結合FWD建立台灣區高速公路鋪面結構評估準則之研究★ The Comparison Study of Various Surface Maintenance Alternatives in Taiwan Freeway
★ The Preliminary Study of conducting Pavement Maintenance Model for Taiwan Provincial Highways using Life-Cycle Cost Analysis★ 冷拌再生瀝青混凝土應用於管線挖掘回填層之可行性研究
★ 台灣現行修補材料運用於柔性鋪面表層裂縫與坑洞修補之耐久性初步探討★ 以車載藍光雷射建構國道鋪面抗滑值與二維紋理之關聯模型
★ 以不同光譜雷射應用於鋪面平坦度量測之綜合性評估★ 冷拌再生瀝青混凝土應用於道路管線挖掘回填工程之現地驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 溫拌技術相較於熱拌具有降低能源消耗和碳排放的優勢,且經國外多年應用發展已相當成熟,國內亦具備生產溫拌瀝青混凝土的能力,勢必成為道路工程的重要趨勢。然而相關研究指出溫拌瀝青混凝土雖然於現地之車轍與水分侵害情形與熱拌瀝青混凝土無異,但試驗室內評估其浸水殘餘強度可能無法通過規範,以致無法使用,且發泡水量對溫拌發泡瀝青混凝土的影響程度尚不明確,故須以研究探討適當配置。本研究欲探討發泡水量對溫拌發泡瀝青混凝土之影響以及與熱拌瀝青混凝土之差異,並探討不同填充料對瀝青混凝土之性能影響,首先以不同發泡水量的溫拌發泡瀝青混凝土進行間接張力試驗、浸水殘餘強度試驗、漢堡輪跡試驗、Ideal Rutting Test與Indirect Tensile Cracking Test等成效試驗後與熱拌進行比較,再將填充料由石粉替換為水泥進行成效比較,試驗結果顯示不同發泡水量之溫拌發泡瀝青混凝土之包裹性及壓實能力皆可符合需求,且成效在統計上無顯著差異。然而溫拌與熱拌比較結果僅1%水量之成效試驗相比均無顯著差異。在填充料的比較中水泥相較於石粉可明顯提升溫拌發泡瀝青混凝土的浸水殘餘強度,故作為溫拌發泡瀝青混凝土的填充料更為合適。
摘要(英) Compared to hot mix, warm mix technology offers the advantages of reducing energy consumption and carbon emissions. The application of warm mix technology has been developed abroad for years. Domestically, the capability to produce warm mix asphalt concrete is also in place, making it certain to become an important trend in pavement engineering. According to related research, although the rutting and moisture damage of warm-mix asphalt concrete (WMA) in the field is similar to the hot-mix asphalt concrete (HMA). The Tensile Strength Ratio of WMA evaluated in the laboratory may not meet specifications, causing it unusable. Therefore, it is necessary to investigate the appropriate configurations for WMA. Furthermore, the impact of foaming water content on foamed warm mix asphalt concrete (FWMA) remains unclear, necessitating further research to determine the appropriate mix design. This study aims to examine the effect of foaming water on FWMA and its differences from HMA, as well as the impact of various fillers on asphalt concrete performance. Initially, FWMA samples with different foaming water contents were subjected to several performance tests, including the Indirect Tensile Test, Tensile Strength Ratio, Hamburg Wheel Tracking Test, Ideal Rutting Test, and Indirect Tensile Cracking Test, and the results were compared with HMA samples. Subsequently, the filler material was switched from limestone to cement for further comparison. The test results indicated that WMA with different foaming water contents met the requirements for coating and compactability, with no statistical significance in performance. However, when comparing the performance of only 1% foaming water, no statistical significance were observed between FWMA and HMA. In the comparison of using different fillers, cement significantly improved the Tensile Strength Ratio of FWMA over limestone, making it a more suitable filler material.
關鍵字(中) ★ 溫拌瀝青混凝土
★ 發泡水量
★ 水分侵害
★ 水泥
關鍵字(英) ★ Warm Mix Asphalt
★ Foaming Water Content
★ Moisture Damage
★ Cement
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 X
表目錄 XIV
第一章、緒論 1
1-1研究背景 1
1-2研究動機 2
1-3研究目的 3
1-4研究流程 4
第二章、文獻回顧 6
2-1溫拌瀝青混凝土 6
2-2溫拌瀝青混凝土技術 8
2-2-1化學添加劑 8
2-2-2有機添加劑 8
2-2-3發泡技術 9
2-3溫拌瀝青混凝土相關研究 10
2-3-1溫拌瀝青混凝土試驗室內與現地相關研究 11
2-4瀝青膠泥之發泡性能 13
2-4-1發泡水量對瀝青性能之影響 13
2-5瀝青混凝土受水分侵害之影響 17
2-5-1水分侵害之形式 17
2-5-2水分影響機制 18
2-5-3瀝青混凝土提升抗水侵害能力作法 20
2-5-4抗水侵害能力評估 21
2-5-5抗水侵害相關研究 23
2-6文獻回顧小節 24
第三章、研究方法 25
3-1研究規劃 25
3-2材料基本性質試驗 28
3-2-1粒料相關基本性質試驗 28
3-2-2瀝青相關基本性質試驗 31
3-3瀝青混凝土配合設計 33
3-3-1瀝青混凝土配合設計流程 33
3-3-2瀝青混凝土配合設計試驗項目 36
3-4瀝青混凝土成效評估 39
3-4-1抗水侵害能力 41
3-4-2抗車轍能力 43
3-4-3抗開裂能力 45
第四章、研究成果及分析 48
4-1材料基本性質試驗結果 48
4-1-1粒料試驗結果 48
4-1-2瀝青膠泥性質試驗結果 50
4-2 SUPERPAVE密級配瀝青混凝土配合設計結果 50
4-2-1粒料級配設計結果 51
4-2-2熱拌瀝青混凝土配合設計結果 52
4-2-3瀝青膠泥發泡性能試驗結果 54
4-2-4瀝青混凝土性能評估 55
4-3瀝青混凝土成效試驗結果 58
4-3-1間接張力試驗結果 58
4-3-2浸水殘餘強度結果 61
4-3-3漢堡輪跡試驗結果 63
4-3-4 Ideal Rutting Test試驗結果 66
4-3-5 Indirect Tensile Cracking Test試驗結果 70
4-3-6試驗室內瀝青混凝土性能討論 83
4-3-7拌合方式與填充料之交互作用探討 92
第五章、結論與建議 93
5-1結論 93
5-2建議 94
參考文獻 95
參考文獻 [1] Kristjansdottir, O. (2007). Warm mix asphalt technology adoption. In NVF 33 Annual meeting. Citeseer.
[2] Rubio, M.C., et al. (2012). Warm mix asphalt: an overview. Journal of Cleaner Production, 24, 76-84.
[3] European Asphalt Pavement Association. (2014). The use of Warm Mix Asphalt.
[4] Brett A. Williams, J.R.W., Ph.D., & Joseph Shacat. (2024). Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2022. 13th Edition Final Report ed.
[5] Hasan, M.R.M., You, Z., & Yang, X. (2017). A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Construction and Building Materials, 152, 115-133.
[6] 黃明詠 (2002)。泡沫瀝青冷拌再生工法在台灣之應用研究。私立中華大學土木工程學系碩士論文,新竹。
[7] 李榮哲 (2009)。溫拌瀝青特性探討之研究。私立東南科技大學防災科技研究所碩士論文,新北。
[8] 徐聖博 (2015)。發泡瀝青技術添加瀝青刨除料應用於道路底層可行性之研究。國立中央大學土木工程學系碩士論文,桃園。
[9] 陳思儒 (2021)。使用發泡瀝青之冷拌再生瀝青混凝土強度發展初步探討。國立中央大學土木工程學系碩士論文,桃園。
[10] 黎媛霞 (2021)。應用瀝青膠泥化學成份與發泡因子於冷拌再生發泡瀝青混凝土之成效研究。國立中央大學土木工程學系碩士論文,桃園。
[11] 卓世淇 (2022)。實驗室內之Clegg衝擊錘與間接張力試驗關聯性研究-以冷拌再生發泡瀝青混凝土。國立中央大學土木工程學系碩士論文,桃園。 
[12] Board, T.R., E. National Academies of Sciences, and Medicine. (2011). Mix Design Practices for Warm-Mix Asphalt. Washington, DC: The National Academies Press. 101.
[13] Board, T.R., E. National Academies of Sciences, and Medicine. (2014). Field Performance of Warm Mix Asphalt Technologies. Washington, DC: The National Academies Press. 240.
[14] Adamson, A.W., & Gast, A.P. (1967). Physical chemistry of surfaces (Vol. 150). Interscience publishers, New York.
[15] Pugh, R. (2005). Experimental techniques for studying the structure of foams and froths. Advances in Colloid and Interface Science, 114, 239-251.
[16] Board, T.R., E. National Academies of Sciences, and Medicine. (2015). Properties of Foamed Asphalt for Warm Mix Asphalt Applications (D.E. Newcomb, et al., Eds.). Washington, DC: The National Academies Press. 126.
[17] Eleyedath, A., Kar, S.S., & Swamy, A.K. (2021). Modelling of expansion ratio and half-life of foamed bitumen using gene expression programming. International Journal of Pavement Engineering, 22(3), 369-381.
[18] Kringos, N. (2007). Modeling of combined physical-mechanical moisture induced damage in asphaltic mixes (Vol. 68). Citeseer.
[19] McGennis, R.B., Kennedy, T.W., & Machemehl, R.B. (1984). Stripping and moisture damage in asphalt mixtures.
[20] Emery, J., & Seddik, H. (1997). Moisture damage of asphalt pavements and antistripping additives: causes, identification, testing and mitigation.
[21] Lytton, R.L., et al. (2005). Measurements of surface energy and its relationship to moisture damage.
[22] Lytton, R. (2004). Adhesive fracture in asphalt concrete mixtures. Course Notes. 
[23] Asphalt Institute. (2007). Moisture Sensitivity: Best Practices to Minimize Moisture Sensitivity in Asphalt Mixtures. Manual Series No. 24 (MS-24).
[24] ASHTO T 283. (2022). Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage.
[25] ASTM D3625. (2020). Standard Practice for Effect of Water on Asphalt-Coated Aggregate Using Boiling Water.
[26] AASHTO T 324. (2022). Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures.
[27] Brown, E., Kandhal, P., & Zhang, J. (2001). Performance testing for hot mix asphalt, National Center for Asphalt Technology. Report No-05A. Auburn Univ., Alabama.
[28] Brown, E., Kandhal, P., & Zhang, J. (2001). Performance testing for hot mix asphalt (Report, 01-05). Auburn, AL: National Center for Asphalt Technology.
[29] Arbabpour Bidgoli, M., Naderi, K., & Moghadas Nejad, F. (2019). Effect of filler type on moisture susceptibility of asphalt mixtures using mechanical and thermodynamic properties. Journal of Materials in Civil Engineering, 31(4), 04019024.
[30] Gupta, L., & Suresh, G. (2018). Determination of indirect tensile strength of bituminous concrete mix prepared using stone dust and cement as filler materials. In Materials for Sustainable Infrastructure: Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures 1. Springer.
[31] AASHTO R 35. (2022). Standard Practice for Superpave Volumetric Design for Asphalt Mixtures.
[32] AASHTO PP 94. (2022). Standard Practice for Determination of Optimum Asphalt Content of Cold Recycled Mixture with Foamed Asphalt.
[33] 行政院公共工程委員會,第02741章,「瀝青混凝土之一般要求」 
[34] AASHTO M 323. (2022). Standard Specification for Superpave Volumetric Mix Design.
[35] AASHTO T 195. (2022). Standard Method of Test for Determining Degree of Particle Coating of Asphalt Mixtures.
[36] ASTM D8360. (2022). Standard Test Method for Determination of Rutting Tolerance Index of Asphalt Mixture Using the Ideal Rutting Test.
[37] ASTM D8225. (2022). Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature.
[38] Zhou, F., et al. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Materials and Pavement Design, 18(sup4), 405-427.
指導教授 陳世晃(SHIH-HUANG, CHEN) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明