博碩士論文 110322018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:18.119.134.213
姓名 馬詩哲(Shi-Zhe Ma)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用勁度可變式滑動隔震支承於三維曲橋之動力歷時分析
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 傳統摩擦單擺支承(FPS)隔震週期與近域地震相近,易產生共振現象,而勁度可變式滑動隔震支承(Sliding Isolators with Variable Curvature, SIVC)可改善此缺點,其隔震週期隨位移變化,可分為兩階段:軟化段支承勁度隨位移增加而減小,可減緩結構之加速度反應;硬化段內支承勁度隨位移增加而增加,其可降低結構之位移反應。此效果可有效減少共振情形發生,更可降低橋面版位移。前人研究中,證實將SIVC中曲盤為六次方程式之多項式摩擦單擺支承(Polynomial Friction Pendulum Isolator, PFPI)用於等高或不等高之直線橋梁均可充分發揮其隔震效果,無論於近/遠域震波中皆有良好之表現。
但過去文獻少有使用PFPI於曲橋之案例,本研究延續前人水平曲梁橋之研究結果,數值分析方面採用基於等效節點割線特性之隱式動力分析程序(Implicit Dynamic Analysis Procedure based on Equivalent Nodal Secant Properties,簡稱為IDAP-ENSP),比較
含PFPI單、多跨曲橋於各種變因下之動力行為,改變參數為曲率、不同支承配置與震波輸入角度,另採多組不同震波進行分析,並將PFPI支承以FPS替代後比較其分析結果。而研究數據顯示曲梁曲率半徑減少、震波輸入角度越大,支承反力與大梁內力差值增加,而不同配置亦造成相異之力學行為。兩種支承比較中,PFPI隔震支承支承反力雖大於FPS,但PFPI隔震支承位移遠小於FPS,證明PFPI於水平曲梁橋下亦有良好的隔震表現。
另外為更加貼近真實情況,本研究亦採用真實雙向震波數據進行分析,從結果可發現除震波輸入角度影響不明顯外,其行為與單向震波分析類似;針對橋墩柱底的塑鉸行為另以Takeda模型進行模擬,可觀察到影響主要發生在大梁內力,加上Takeda模型後單跨大梁內力減少、多跨斷面內力增加。
摘要(英) The traditional Friction Pendulum System (FPS) isolator has an isolation period similar to near-field earthquakes, making it prone to resonance. However, the Sliding Isolators with Variable Curvature (SIVC) can address this drawback. The isolation period of SIVC varies with displacement and can be divided into two stages: the softening stage, where the bearing stiffness decreases with increasing displacement, reducing the structure′s acceleration response; and the hardening stage, where the bearing stiffness increases with increasing displacement, thereby reducing the structure′s displacement response. This effect can effectively reduce the occurrence of resonance and further decrease the displacement of the bridge deck. Previous studies have confirmed that the Polynomial Friction Pendulum Isolator (PFPI) with a polynomial friction pendulum of sixth-order equation in the SIVC can fully exhibit its isolation effect when applied to straight bridges of equal or unequal height, performing well under both near-field and far-field seismic waves.

However, there have been few cases in the literature using PFPI for curved bridges. This study extends previous research on horizontally curved girder bridges. In the numerical analysis, an Implicit Dynamic Analysis Procedure based on Equivalent Nodal Secant Properties (IDAP-ENSP) was used to compare the dynamic behavior of single-span and multi-span curved bridges with PFPI under various conditions. The parameters varied included curvature, different support configurations, and seismic wave input angles. Multiple sets of different seismic waves were analyzed, and the results were compared with those where PFPI supports were replaced by FPS. The research data showed that as the radius of curvature of the girder decreased and the seismic wave input angle increased, the difference in bearing reaction forces and internal forces of the girders increased, and different configurations also resulted in varying mechanical behaviors. In the comparison between the two types of supports, while the bearing reaction force of the PFPI isolator was greater than that of the FPS, the displacement of the PFPI isolator was significantly smaller than that of the FPS, proving that the PFPI exhibits good isolation performance in horizontally curved girder bridges.

Moreover, to better simulate real conditions, this study also used real bi-directional seismic wave data for analysis. The results indicated that, apart from the input angle of the seismic wave having an inconspicuous effect, the behavior was similar to that of the unidirectional seismic wave analysis. For the plastic hinge behavior at the base of the pier columns, the Takeda model was used for simulation. It was observed that the impact mainly occurred in the internal forces of the girders. With the addition of the Takeda model, the internal forces of the single-span girders decreased, while the internal forces of the multi-span sections increased.
關鍵字(中) ★ 水平曲梁橋
★ 勁度可變式滑動隔震支承
★ 多項式摩擦單擺支承
★ 近斷層震波
★ 基於等效節點割線特性之隱式動力分析程序
★ Takeda模型
關鍵字(英)
論文目次 目錄
摘要 II
ABSTRACT III
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 近遠域震波特性 3
1.2.2 變曲率摩擦單擺支承 3
1.2.3 曲線橋梁 4
1.2.4 新隱式非線性動力有限元素分析方法 7
1.3 研究內容 8
第二章 多項式摩擦單擺支承 9
2.1 勁度可變式滑動隔震支承力學行為 9
2.2 支承曲面函數與特性 13
第三章 基於等效節點割線特性之隱式動力分析程序 18
3.1 三維滑動支承元素 19
3.1.1 元素黏滯狀態 19
3.1.2 元素滑動狀態 21
3.1.3 元素分離狀態 25
3.1.4 摩擦係數模型 25
第四章 含變曲率滑動支承曲橋模型 28
4.1 目標曲線梁橋模型 29
4.1.1 含PFPI單跨曲橋 29
4.1.2 含PFPI多跨曲橋 30
4.2 PFPI支承參數設計 30
4.3 輸入震波 31
4.3.1 實際震波 31
4.3.2 研究所用調整倍率震波 31
第五章 分析結果與討論 45
5.1 含PFPI單跨曲橋之支承系統探討 45
5.1.1 支承反力 46
5.1.2 支承反應 47
5.1.3 大梁內力 48
5.2 含PFPI多跨度曲橋之支承系統探討 49
5.2.1 支承反力 49
5.2.2 支承反應 50
5.2.3 大梁內力 51
5.3 含PFPI曲橋與傳統滑動支承之隔震性能比較 52
5.3.1 單跨曲橋比較 52
5.3.2 多跨曲橋比較 53
5.4 含PFPI單跨曲橋在雙向震波影響下之支承系統探討 55
5.4.1 支承反力 55
5.4.2 支承反應 56
5.4.3 大梁內力 56
5.5 含PFPI多跨曲橋在雙向震波影響下之支承系統探討 56
5.5.1 支承反力 57
5.5.2 支承反應 57
5.5.3 大梁內力 58
5.6 Takeda模型對於曲橋之應用與改良 59
5.6.1 單跨塑鉸遲滯迴圈 59
5.6.2 多跨曲橋遲滯迴圈 59
5.6.3 Takeda模型對於含PFPI單跨曲橋之影響 60
5.6.4 Takeda模型對於含PFPI多跨曲橋之影響 61
5.7 有無橋墩對於單/多跨曲梁橋之影響 62
5.7.1 有無橋墩單跨曲橋之數據比較 62
5.7.2 有無橋墩多跨曲橋之數據比較 63
5.8 小結 64
第六章 結論與建議 555
6.1 結論 555
6.2 建議與未來研究方向 557
參考文獻 1. Ghobarah, A. and Ali, H. M. (1988). “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166.
2. Bruneau, M., Wilson, J. C., and Tremblay, R. (1996). “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713.
3. Otsuka, H. and et al. (1997). “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33.
4. Basöz, N. I. and Kiremidjian, A. S. (1998). “Evaluation of bridge damage data from the Loma Prieta and Northridge, CA earthquakes.” Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1-35.
5. Basöz N. I. (1999). “Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake.” Earthquake Spectra, 15(1), 25-54.
6. Lee, G. C. and Loh, C. (1999). “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
7. Kosa, K. (2001). “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154.
8. Kawashima, K. (2002). “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197.
9. Celebi, M. (1996). “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” The Structural Design of Tall Buildings, 5(2), 95-109.
10. Asher, J. W. (1997). “Performance of Seismically Isolated Structures in the 1994 Northridge and 1995 Kobe Earthquakes.” Proceedings of Structures Congress XV (ASCE), 1128-1132.
11. Martelli, A. and Forni, M. (1998). “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
12. Bozorgnia, Y., Manhin, S. A., Brady A. G. (1998) “Vertical response of twelve structures recorded during the Northridge earthquake,” Earthquake Spectra, 14(3), August, 411-432.
13. Kelly, J. M. (1998). “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
14. Fujita, T. (1998). “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1( 3), 295-300.
15. Naeim, F. and Kelly, J. M. (1999). Design of Seismic Isolated Structures: From Theory to Practice. John Wiley & Sons, inc.
16. Yang, Y. B., Lu, L.Y., Yau, J. D. (2005) “Chapter 22: Structure and Equipment Isolation,” Vibration and Shock Handbook, edited by C. W. de Silva, CRC Press, Taylor & Francis Group
17. 盧煉元、鍾立來(1999) “國內外結構控制技術之進展”,土木技術(防災科技專題),四月號,第14期,81-95頁。
18. Jangid, R.S, “Optimum friction pendulum system for near-fault motions.” Engineering Structures, Vol.27, No.3, 349-359, 2004.
19. 盧煉元、施明祥、張婉妮,「近斷層震波對滑動式隔震結構之影響評估」,結構工程,第十八卷,第四期,第23-48頁,2003。
20. 盧煉元、施明祥、曾旭玟、吳政彥,「滑動隔震支承之研發與其受近斷層震波行為之實驗探討」,結構工程,第二十卷,第三期,29-59頁,2005。
21. 盧煉元、李姿瑩、葉奕麟、張洵,「變頻式搖擺支承於近域隔震之運用」,中國土木水利工程學刊,第二十二卷第三期,283-298,2010。
22. Lu, L. Y., Lee, T. Y., Juang, S. Y., Yeh, S. W., “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: an experimental and theoretical study.” Engineering Structures, Vol. 56, 970-982, 2013.
23. Lu, L.Y., Shih, M.H., Wu, C.Y., “Near-Fault Seismic Isolation Using Sliding Bearings with Variable Curvatures,” Proceedings of the 13th World Conference on Earthquake Engineering, August 1-6, Vancouver, BC, Canada, Paper no. 3264, 2004.
24. Lu, L. Y., Lee, T. Y., Yeh, S. W., “Theory and experimental study for sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, Vol. 40, No. 14, 1609-1627, 2011.
25. 李姿瑩、盧煉元、曹哲瑋、洪文孝,「應用變頻式摩擦單擺支承於不等高橋墩橋梁之實驗」,中華民國第十四屆結構工程研討會暨第四屆地震工程研討會,民國107年11月24-26日,台中,台灣,2018。
26. 陳奕翔,「含變頻滑動支承及抗拉拔裝置橋梁在水平雙向震波下之振動台實驗」,國立中央大學土木系碩士論文,2022。
27. 羅定軒,「應用勁度可變式滑動隔震支承於平面曲梁橋之動力分析」,國立中央大學土木系碩士論文,2023。
28. Ates, S., and Constantinou, M. C., “Example of application of response history analysis for seismically isolated curved bridges on drilled shaft with springs representing soil.” Soil Dynamics and Earthquake Engineering, 31(3), 334-350, 2011.
29. Ates, S., and Constantinou, M. C., “Example of application of response spectrum analysis for seismically isolated curved bridges including soil-foundation effects.” Soil Dynamics and Earthquake Engineering, 31(4), 648-661, 2011.
30. Kataria, N. P. and Jangid, R. S., “Seismic protection of the horizontally curved bridge with semi-active variable stiffness damper and isolation system.” Advances in Structural Engineering, 19(7), 1103-1117, 2016.
31. Abdelnaby, A. E., Frankie, T. M., Elnashai, A. S., Spencer, B. F., Kuchma, D. A., Silva, P., et al., “Numerical and hybrid analysis of a curved bridge and methods of numerical model calibration.” Engineering Structures, 70, 234-245, 2014.
32. Yan, L., Li, Q., Han, C., and Jiang, H., “Shaking table tests of curved bridge considering bearing friction sliding isolation.” Shock Vib., 2016, 1-14, 2014.
33. Zhi, Z., Xiaojun, L., Riqing, L., and Chenning, S., “Shaking table tests and numerical simulations of a small radius curved bridge considering SSI effect.” Soil Dynamics and Earthquake Engineering, 118, 1-18, 2019.
34. Chai, J. F. and C. H. Loh, “Near-fault ground motion and its effect on civil structures.” International workshop on mitigation of seismic effects on transportation structures, July 12-14, Taipei, Taiwan, R.O.C. 70-81, 2000.
35. 葉超雄,「近斷層建築物設計地震力之研究」,921集集地震與建築物耐震技術研討會論文集,內政部建研所企劃,台北,1999年12月。
36. Hall, J. F., T. H. Heaton, and M. W. Halling, D. J. Wald., “Near-source ground motions and its effects on flexible buildings.” Earthquake Spectra, 11, 569-605, 1995.
37. Loh, C. H., “Interpretation of structural damage in 921 Chi-Chi-earthquake.” Proceedings of International Workshop on Chi-Chi, Taiwan Earthquake of September 21, 1999, Dec. 14-17, pp 5-1 ~ 5-77, 1999.
38. Liao, W. I., C. H. Loh and S. Wan, “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep 18-20, Taipei, 371-380, 2000.
39. Makris N. and Chang, S. P., “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.” Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 1998.
40. 張婉妮,「近斷層震波對滑動隔震結構之影響」,高雄第一科技大學營建工程系碩士論文,2001。
41. Zayas, V. A., Low, S. S., and Mahin, S. A. (1990). “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra, 6, 317-333.
42. Pranesh, M. and Sinha, R., “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627, 2000.
43. Pranesh, M. and Sinha, R., “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, ASCE, 128(7), 870-882, 2002.
44. Pranesh, M. and Sinha, R., “Aseismic design of structure–equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139, 2004.
45. Pranesh, M. and Sinha, R., “Behavior of structures isolated using VFPI during bear source ground motions.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105, 2004.
46. 吳政彥,「變曲率滑動隔震結構之實驗與分析」,高雄第一科技大學營建工程系碩士論文,2004。
47. 盧煉元,吳政彥,葉奕麟 ,「圓錐形摩擦單擺支承之隔震應用研究」結構工程,二十四卷,第二期,91-116頁,2009。
48. Lu, L. Y., Shih, M. H., and Wu, C. Y., “Sliding isolation using variable frequency bearings for near-fault ground motions.” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164, 2006.
49. 王健,「變曲率滑動隔震防制近斷層震波之實驗與分析」,高雄第一科技大學營建工程系碩士論文,2006。
50. 董佩宜,「應用多項式摩擦單擺支承之隔震橋梁研究」,國立中央大學土木系碩士論文,2010。
51. Williams, D. and Godden, W., “Seismic response of long curved bridge: experimental model studies.” Earthquake Engineering and Structural Dynamics, 7(2), 107-128, 1979.
52. Han, Q., Du, X., and Liu, J. et al., “Seismic damage of highway bridges during the 2008 Wenchuan earthquake” Earthq. Eng. Eng. Vib., 8(2), 263–73, 2009.
53. Seo, J. and Linzell, D. G., “Horizontally curved steel bridge seismic vulnerability assessment.” Engineering Structures, 34(1), 21-32, 2012.
54. Wilson, T., Mahmoud, H. and Chen, S., “Seismic performance of skewed and curved reinforced concrete bridges in mountainous states.” Engineering Structures, 70(3), 158-167, 2014.
55. Tondini, N., and Stojadinovic, B., “Probabilistic seismic demand model for curved reinforced concrete bridge.” Bulletin of earthquake engineering, 10(5), 1455-1479, 2012.
56. Lee, T.Y., Chung, K.J. and Chang, H., “A new procedure for nonlinear dynamic analysis of structures under seismic loading based on equivalent nodal secant stiffness, ” International Journal of Structural Stability and Dynamics, 18(3), 1850043, 2018.
57. Lee, T.Y., Chung, K.J. and Chang, H., “A new implicit dynamic finite element analysis procedure with damping included.” Engineering Structures, 147, 530-544, 2017.
58. 鍾昆潤,「非耦合隱式動力有限元素分析及其於結構崩塌分析之應用」,國立中央大學土木系博士論文,2018。
59. Bathe, K. J. and Baig, M. M. I., “On a composite implicit time integration procedure for nonlinear dynamics “ Computers and Structures, 2005.
60. Bathe, K. J., “Conserving energy and momentum in nonlinear dynamics:A simple implicit time integration scheme” Computers and Structures, 2007
61. Bathe, K. J. and Noh, G. , “Insight into an implicit time integration scheme for structural dynamics” Computers and Structures, 2012
62. 李姿瑩、盧煉元、陳奕翔、洪文孝,「含變頻式摩擦單擺支承與抗拉拔裝置橋梁之水平雙向振動台實驗」,中華民國力學學會第四十五屆全國力學會議,民國110年11月18-19日,新北市,台灣,2021。
63. Zayas, V. A., Low, S. S., and Mahin, S. A., “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra, 6, 317-333, 1990.
64. Anil K. Chopra, “Dynamics of Structures - Theory and Application to Earthquake Engineering.”4th Edition,Prentice-Hall, 174-180, 2011 .
65. Przemieniecki, J. S., “Theory of matrix structural analysis”, Dover Publications, Inc. , New York, 2012.
66. Noh, G., and Bathe, K. J., “Further insights into an implicit time integration scheme for structural dynamics.” Computers & Structures, 202, 15-24, 2018.
67. 王聖文,「含結構阻尼之三維非線性動力歷時分析」,國立中央大學土木系碩士論文,2020。
68. Constantinou, M.C., Mokha, A.M. and Reinhorn, A.M., “Teflon bearings in base isolation. Part 2: Modeling,” Journal of Structural Engineering, Vol. 116, No. 2, 455-474, 1990.
69. Crisfield, M. A. and Moita, F. G., “A co-rotational formulation for 2-D continua including incompatible modes,” International Journal of Numerical Methods in Engineering. 39(15), 2619-2633, 1996.
70. 王紹柔,「大尺度變曲率滑動隔震支承之理論與實驗研究」,國立成功大學土木系碩士論文,2020。
71. Baker, J. W., Lin, T., Shahi, S. K., & Jayaram, N., “New ground motion selection procedures and selected motions for the PEER transportation research program.” PEER report, 3, 2011.
72. 李姿瑩、盧煉元、黃麟翔、洪文孝,「應用含抗拉拔裝置變頻式摩擦單擺支承於橋梁之實驗」,中華民國第十五屆結構工程研討會暨第五屆地震工程研討會,民國109年9月2-4日,台南,台灣,2020。
73. 林宜泓,「含變頻滑動支承不等高橋墩橋梁之最佳化設計」,國立中央大學土木系碩士論文,2022。
74. 黃麟翔,「含變頻滑動支承及抗拉拔裝置之不等高橋梁實驗」,國立中央大學土木系碩士論文,2020。
75. 王亮偉,「變曲率滑動隔震系統於三維震波作用下之實驗與理論研究」,國立成功大學土木系碩士論文,2016。
76. 廖于婷,「考慮接頭連結效應之非線性構架動力分析」,國立中央大學土木系碩士論文,2022。
77. 王俊清,「應用多項式摩擦單擺支承於橋梁之性能設計」,國立中央大學土木系碩士論文,2016。
78. 盧煉元,施明祥,吳政彥,許朝畯,葉奕麟 “錐形摩擦單擺支承之實驗研究” 第八屆結構工程研討會論文集,南投日月潭,論文編號:H-004 (2006)。
79. Amjadian, M. and K.Agrawal, A., “Rigid-Body MotionofHorizontally Curved Bridges Subjected to Earthquake-Induced Pounding,” Journal of Bridge Engineering. vol. 21, no. 12, Article ID 04016090, 2016
80. Tondini, N. and Stojadinovic, B., “Probabilistic seismic demand model for curved reinforced concrete bridges,” Bull Earthquake Engineering.10:1455–1479, 2012.
指導教授 李姿瑩(Zi-Ying Li) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明