博碩士論文 111322089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.148.108.244
姓名 黃亭耀(Ting-Yao, Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 Abaqus軟體於3D列印混凝土分析之開發與應用
相關論文
★ Nonlinear Analysis of Reinforced Concrete Structures using The Novel Implicit Nonlinear Dynamic Finite Element method★ 數據驅動之鋼筋混凝土構架機率式地震風險評估
★ 結合深度學習與房屋街景圖像之機率式地震風險評估★ 條件生成對抗網路於鋼筋混凝土柱遲滯迴圈預測之開發與應用
★ 基於注意力機制的雙向長短型記憶神經網絡模型於地震預測之開發與應用★ 鋼筋混凝土剪力牆機率式地震風險評估架構之開發與應用
★ 含物理約束之長短型記憶神經網絡模型於結構物動力反應預測之開發與應用★ 鋼 筋 混 凝 土 構 架 含 填 充 磚 牆 機 率 式 地 震 風 險 分 析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 3D列印混凝土是一項創新技術,具有改變建築和施工方式的潛力。其主要優勢包括提高施工速度和減少勞動力需求,以及更靈活的設計能力。透過3D列印,可以創建更複雜和精確的建築結構,這在傳統建築方法中是難以實現的。然而,這項技術目前仍面臨一些挑戰。首先是材料方面的問題,3D列印混凝土需要特定的配方,以確保其在列印過程中具有適當的流動性和固化時間,因此如何選擇正確的材料為重要的一環。若可以在列印前先使用軟體進行分析,則可以減少因材料及結構上的不良選擇而造成的結構物缺陷,進而降低因列印失誤造成的的材料浪費。
本研究旨在使用Abaqus有限元素分析軟體對3D列印混凝土進行模擬,探討不同尺寸、列印速度、形狀和材料對其列印過程及最終結構性能的影響。通過建立不同尺寸的3D列印混凝土模型,分析其應力分布、變形行為及結構穩定性,同時比較不同列印速度和材料對混凝土沙漿結構性能的影響,以確定最佳的列印參數。本研究同時建立了一套系統化的操作流程(Standard Operating Procedure, SOP),為後續研究提供標準化的參考,以提高研究效率和結果的可重複性。另外,本研究基於此套工具,對於3D列印混凝土在不同形狀、列印速度、材料參數等狀況下進行分析以及比較。
本研究開發之Abaqus模擬3D列印混凝土,不僅可以節省實際列印上所需之材料和時間,更可以提高設計的準確性和施工效率,為3D列印混凝土技術的廣泛應用提供有力支持。
摘要(英) 3D printed concrete is an innovative technology with the potential to transform construction methods. Its primary advantages include increasing construction speed, reducing labor demands, and offering greater design flexibility. With 3D printing, it is possible to create more complex and precise architectural structures, which are difficult to achieve with traditional construction methods. However, this technology currently faces several challenges. First, there are material issues: 3D printed concrete requires specific formulations to ensure proper flowability and curing time during the printing process. Selecting the right materials is therefore a crucial aspect. If software analysis is performed before printing, it can help reduce structural defects caused by poor material and structural choices, thereby minimizing material waste due to printing errors.
This study aims to use Abaqus finite element analysis software to simulate 3D printed concrete, investigating the effects of different sizes, printing speeds, shapes and materials on the printing process and the final structural performance. By establishing models of 3D printed concrete with varying sizes, the study analyzes the stress distribution, deformation behavior, and structural stability. Additionally, it compares the effects of different printing speeds and materials on the structural performance of the concrete mortar to determine the optimal printing parameters. A systematic standard operating procedure (Standard Operating Procedure, SOP) is also developed in this study, providing a standardized reference for subsequent research to improve research efficiency and result reproducibility.
The Abaqus simulation of 3D printed concrete developed in this study not only saves the materials and time required for actual printing but also enhances design accuracy and construction efficiency. This provides strong support for the widespread application of 3D printed concrete technology.
關鍵字(中) ★ Abaqus
★ 有限元素分析
★ 3D列印混凝土
★ 列印過程模擬
★ 結構性能評估
關鍵字(英)
論文目次 一、緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 2
1-3 論文架構 5
二、3D列印混凝土及Abaqus介紹 7
2-1 3D列印混凝土簡介 7
2-2 Abaqus簡介 8
2-3 使用Abaqus進行3D列印混凝土的模擬分析 9
2-3-1 Part模塊 10
2-3-2 Property模塊 14
2-3-3 Assembly模塊 19
2-3-4 Step模塊 21
2-3-5 Load模塊 22
2-3-6 Mesh模塊 26
2-3-7 AM Modeler 29
2-3-8 Job模塊 33
2-3-9 Visualization模塊 34
2-4 小結 36
三、基於不同試體尺寸與列印形狀的分析比較 37
3-1 驗證工具準確度 37
3-2 基於不同尺寸及形狀的比較 39
3-2-1 不同直徑的空心圓柱體 39
3-2-2 中間有十字支撐的空心圓柱體 44
3-2-3 方形 47
3-3 基於不同列印速度試體的比較 50
3-4 小結 63
四、基於不同材料屬性的比較 64
4-1 增加早期強度 66
4-2 降低早期強度 68
4-3 提升整體強度 69
4-4 降低整體強度 71
4-5 比對結果 72
4-6 小結 75
五、結論與未來展望 76
5-1 結論 76
5-2 未來展望 77
參考文獻 78
參考文獻 [1] Dassault systems. (2024, July). ABAQUS. https://www.3ds.com/products/simulia/abaqus
[2] C.R. Gagg, Cement and concrete as an engineering material: an historic appraisal and case study analysis, Eng. Fail. Anal. 40 (2014) 114–140.
[3] R.A. Buswell, R.C. Soar, A.G.F. Gibb, A. Thorpe, Freeform construction: mega-scale rapid manufacturing for construction, Autom.ConStruct. 16 (2007) 224–231.
[4] S. Martinez, C. Balaguer, A. Jardon, J.M. Navarro, A. Gimenez, C. Barcena, Robotized lean assembly in the building industry, in: ISARC 2008 - Proc. From 25th Int. Symp. Autom. Robot. Constr, 2017.
[5] Khoshnevis, Behrokh. "Automated construction by contour crafting—related robotics and information technologies." Automation in construction 13.1 (2004): 5-19.
[6] BAM. (2022, September 19). Big Step Forward for Glasgow Bridge as BAM Installs Scotland’s First 3D Concrete Printed Staircase. https://www.bam.co.uk/media-centre/news-details/big-step-forward-for-glasgow-bridge-as-bam-installs-scotland-s-first-3d-concrete-printed-staircase
[7] Contour crafting. (2024, June). Offering Automated Construction of Various Types of Structures. https://www.contourcrafting.com/building-construction
[8] Duballet, Romain, Olivier Baverel, and Justin Dirrenberger. "Classification of building systems for concrete 3D printing." Automation in Construction 83 (2017): 247-258.
[9] Team Xometry. (2023, May 24). 11 Best 3D Printers for House Construction. https://www.xometry.com/resources/3d-printing/best-3d-printers-for-construction/
[10] Jack Portley. (2024, April 16). The Rise of 3D Printed Houses: Changing The Future of Housing. https://knowhow.distrelec.com/3d-printing/the-rise-of-3d-printed-houses-changing-the-future-of-housing/
[11] Nguyen-Van, Vuong, et al. "Digital design computing and modelling for 3-D concrete printing." Automation in Construction 123 (2021): 103529.
[12] 紀茂傑、卓世偉,「3D列印混凝土發展現況與應用」,營建知訊,469期,2022
[13] S. Lim, R. Buswell, T. Le, R. Wackrow, S. Austin, A. Gibb, T. Thorpe, Development of a viable concrete printing process, in: Proc. 28th Int. Symp. Autom. Robot. Constr. ISARC 2011, 2011, pp. 665–670.
[14] N. Roussel, Rheological requirements for printable concretes, Cement Concr. Res. 112 (2018) 76–85
[15] V. Mechtcherine, F.P. Bos, A. Perrot, W.R.L. da Silva, V.N. Nerella, S. Fataei, R.J. M. Wolfs, M. Sonebi, N. Roussel, Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: a review, Cement Concr. Res. 132 (2020) 106037.
[16] P. Wu, J. Wang, X. Wang, A critical review of the use of 3-D printing in the construction industry, Autom. ConStruct. 68 (2016) 21–31.
[17] F. Bos, R. Wolfs, Z. Ahmed, T. Salet, Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing, Virtual Phys. Prototyp. 11 (2016) 209–225.
[18] R.A. Buswell, W.R. Leal de Silva, S.Z. Jones, J. Dirrenberger, 3D printing using concrete extrusion: a roadmap for research, Cement Concr. Res. 112 (2018) 37–49
[19] 劉玉雯、石桓瑜,「3D列印混凝土之力學性質」,營建知訊,483期,2023。
[20] 實威國際. (2024, June). Abaqus統一的多物理場有限元素分析軟體. https://www.swtc.com/upload/16762735522.pdf
[21] Wolfs, R. J. M., Freek P. Bos, and T. A. M. Salet. "Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing." Cement and Concrete Research 106 (2018): 103-116.
[22] Dasssault systems. (2024, July). 最大von Mises應力準則. https://help.solidworks.com/2024/Chinese/SolidWorks/cworks/r_Maximum_von_Mises_Stress_Criterion.htm
指導教授 陳鵬宇 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明