博碩士論文 112322057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.137.169.60
姓名 江天璽(Tien-Hsi Chiang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 逆斷層錯動下剪裂帶與隧道之互制行為
(Interaction behavior between tunnel’s movement and shear zone development during reverse fault slipping)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-30以後開放)
摘要(中) 活動斷層錯動造成的地表永久變位,是鄰近地下結構物需要關注的議題。臺灣都會區大眾運輸地下網路發展迅速,隧道的密度逐年增加,臺灣位於環太平洋地震帶,活動斷層多且地震頻繁,當強震發生時,會使隧道產生變形甚至是位移。若隧道位於活動斷層附近,近斷層效應以及地中剪裂帶發展亦會對隧道產生影響。此外,若都市進行更新計畫並進行新結構物的深開挖工程時,基地鄰近如有既存隧道,在地震發生時就需要探討隧道與剪裂帶之間的關係。
  本研究是以離心模型模擬的方式進行,探討在傾角60度的逆斷層錯動下,矩形隧道在不同水平、垂直位置受到錯動時,隧道與剪裂帶的互制行為,而以下將以原型尺寸進行試驗內容的討論,試體之土層厚度為16 m的石英砂層,並於深度3.7 m、7.5 m處放置矩形隧道(以隧道中心點定義位置),矩形隧道質心高度為1.86 m、接觸應力為56.8 kPa。本研究於試驗過程中紀錄斷層錯動量、隧道傾斜量、隧道位移量、剪裂帶發展與地表高程變化情形。本研究發現,當隧道埋深為隧道高度的2倍,且位於斷層延伸線上方或往下盤方向0.5倍隧道寬度時,隧道的傾斜量、水平及垂直位移量和地表影響範圍較大;而隧道距離斷層延伸線往上盤方向0.5倍隧道寬度或往下盤方向1倍隧道寬度時,這些影響較小,因此可定義出危險區域為距斷層延伸線往上盤方向0.5倍至往下盤方向1倍隧道寬度內。在相同埋置深度下,隧道距離斷層延伸線越近,傾斜量、水平和垂直位移量越大,最多增加17.6度、30.5%和36.3%隧道寬度。在相同水平位置下,埋置深度越淺,隧道傾斜量、水平和垂直位移量就越大,分別最多增加8.9度、5%和6.4%隧道寬度。隧道位於剪裂帶範圍內時,剪裂帶會繞過隧道,包絡線與延伸線角度最多增加37度(相同埋置深度不同水平位置)和10度(相同水平位置不同埋置深度)。剪裂帶與斷層延伸線的夾角越大,地表影響範圍越大,相同埋置深度下最多增加90%土層厚度,埋置深度變淺時最多增加40%。綜上所述,隧道設計需考慮埋置深度及水平位置對其穩定性及地表影響範圍的影響,以確保隧道安全。
摘要(英) The permanent surface displacement caused by active fault movement is a critical issue for nearby underground structures. The rapid development of underground mass transit networks in Taiwan′s metropolitan areas has led to an increase in tunnel density year by year. Taiwan is located in the seismically active Pacific Ring of Fire, with numerous active faults and frequent earthquakes. When a strong earthquake occurs, tunnels can deform or even displace. If a tunnel is near an active fault, the near-fault effects and the development of shear zone in the ground can also affect the tunnel. Additionally, when urban renewal projects involve terminology for new structures, the relationship between existing tunnels and shear zones needs to be considered during an earthquake.
  This study employs centrifuge model simulations to investigate the interaction behavior between a rectangular tunnel and a shear zone under a reverse fault movement with a dip angle of 60 degrees. The focus is on the tunnel′s response when subjected to fault movements at different horizontal and vertical positions. The prototype dimensions are discussed in the experimental content, with the soil layer composed of silica sand having a thickness of 16 m. Rectangular tunnels are placed at depths of 3.7 m and 7.5 m (defined by the tunnel center point). The tunnel centroid height is 1.86 m, and the contact stress is 56.8 kPa. During the experiments, fault movement, tunnel inclination, tunnel displacement, shear zone development, and ground surface elevation changes were recorded.The study found that when the tunnel burial depth is twice the tunnel height and located above the fault extension line or in the downward direction at 0.5 times the tunnel width, the tunnel′s inclination, horizontal and vertical displacements, and ground surface impact range are larger. Conversely, when located in the upward direction at 0.5 times the tunnel width or in the downward direction at 1 time the tunnel width from the fault extension line, these impacts are smaller. Thus, the danger zone can be defined as within 0.5 times the tunnel width in the upward direction to 1 time the tunnel width in the downward direction from the fault extension line. At the same burial depth, the closer the tunnel is to the fault extension line, the greater the inclination, horizontal and vertical displacement, increasing by up to 17.6 degrees, 30.5%, and 36.3% of the tunnel width, respectively. At the same horizontal position, the shallower the burial depth, the greater the tunnel′s inclination, horizontal and vertical displacement, increasing by up to 8.9 degrees, 5%, and 6.4% of the tunnel width, respectively.When the tunnel is located within the shear zone, the shear zone bypasses the tunnel, and the angle between the envelope line and the extension line increases by up to 37 degrees (at the same burial depth with different horizontal positions) and 10 degrees (at the same horizontal position with different burial depths). The larger the angle between the shear zone and the fault extension line, the greater the ground surface impact range, increasing by up to 90% of the soil layer thickness at the same burial depth and up to 40% when the burial depth becomes shallower.In conclusion, tunnel design needs to consider the impacts of burial depth and horizontal position on its stability and ground surface impact range to ensure tunnel safety.
關鍵字(中) ★ 矩形隧道
★ 逆斷層
★ 離心模型試驗
★ 剪裂帶
★ 地表影響範圍
關鍵字(英) ★ Rectangular tunnel
★ reverse fault
★ centrifuge model test
★ shear zone
★ ground affected zone
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
一、 緒論 - 1 -
1-1 研究動機與目的 - 1 -
1-2 研究方法 - 2 -
1-3 論文架構 - 3 -
二、 文獻回顧 - 4 -
2-1 斷層概述 - 4 -
2-1-1 活動斷層定義與分類 - 4 -
2-1-2 活動斷層調查方法 - 6 -
2-1-3 破裂型態 - 6 -
2-2 現地案例 - 7 -
2-3 明挖覆蓋隧道 - 11 -
2-3-1 明挖覆蓋隧道設計規範 - 11 -
2-3-2 明挖覆蓋隧道之調查 - 11 -
2-3-3 矩形隧道扭矩計算: - 13 -
2-4 1-g模型試驗 - 15 -
2-5 離心模型試驗 - 15 -
2-6 離心模型原理 - 18 -
2-6-1 離心模型之縮尺律(scaling law) - 19 -
2-6-2 離心模型之限制 - 20 -
3 三、 離心模型試驗設備與試驗步驟 - 21 -
3-1 試驗儀器與設備 - 21 -
3-1-1 地工離心機 - 21 -
3-1-2 斷層模擬試驗箱(Fault simulation container) - 24 -
3-1-3 地表高程掃描裝置 - 26 -
3-1-4 雷射位移感測器(LDT) - 26 -
3-1-5 線性可變差動變壓器(LVDT) - 27 -
3-1-6 攝影系統 - 28 -
3-1-7 移動式霣降儀-* - 29 -
3-2 試驗材料 - 30 -
3-2-1 石英細砂 - 30 -
3-2-2 黑色色砂 - 31 -
3-3 隧道模型設計 - 32 -
3-4 試驗前準備與試驗步驟 - 34 -
3-4-1 試驗前保養及準備工作 - 34 -
3-4-2 試體製作 - 34 -
3-4-3 試體安裝 - 36 -
3-4-4 試驗過程 - 36 -
四、 試驗內容與結果討論 - 37 -
4-1 試驗內容 - 37 -
4-2 試驗數據相關名詞與定義 - 41 -
4-3 試驗結果 - 44 -
4-3-1 TL-[-0.5b,2h]試驗結果 - 44 -
4-3-2 TL-[0b,2h]試驗結果 - 50 -
4-3-3 TL-[0.5b,2h]試驗結果 - 56 -
4-3-4 TL-[1b,2h]試驗結果 - 62 -
4-3-5 TL-[-0.5b,1h]試驗結果 - 68 -
4-3-6 TL-[1b,1h]試驗結果 - 74 -
4-4 試驗結果討論 - 80 -
4-4-1 剪裂帶發展 - 81 -
4-4-1-1比較不同水平位置下的影響(-0.5b、0b、0.5b、1b) - 81 -
4-4-1-2比較不同埋置深度之影響(1 h&2 h) - 82 -
4-4-2 隧道傾斜量 - 83 -
4-4-2-1比較不同水平位置下的影響(-0.5b、0b、0.5b、1b) - 83 -
4-4-2-2比較不同埋置深度之影響(1 h&2 h) - 84 -
4-4-3 隧道水平、垂直位移量 - 85 -
4-4-3-1比較不同水平位置下的影響(-0.5b、0b、0.5b、1b) - 85 -
4-4-3-2比較不同埋置深度之影響(1 h&2 h) - 86 -
4-4-4 地表影響範圍 - 87 -
4-4-4-1比較不同水平位置下的影響(-0.5b、0b、0.5b、1b) - 87 -
4-4-4-2比較不同埋置深度之影響(1 h&2 h) - 88 -
五、 結論與建議 - 89 -
5-1 結論 - 89 -
5-2 建議 - 90 -
參考文獻 - 91 -
參考文獻 [1] 李崇正,「離心模型試驗在大地工程之應用」,地工技術,第36集,第76-91頁(1991)。
[2] 李崇正,「模型試驗在大地工程教學的應用」,土木水利,第30卷,第4期,第89-92頁(2003)。
[3] 李錫堤、康耿豪、鄭錦桐、廖啟雯,「921集集大地震之地表破裂及地盤變形現象」,地工技術,第81期,第5-16頁(2000)。
[4] 張徽正、林啟文、陳勉銘、盧詩丁,「臺灣活動斷層分布圖說明書」,經濟部中央地質調查所特刊,第10號(1998)。
[5] 林啟文、劉彥求、周稟珊、林燕慧,「臺灣活動斷層調查的近期發展」,經濟部中央地質調查所彙刊,第34號,第1-40頁(2021)。
[6] 林啟文、陳文山、饒瑞鈞,「台灣活動斷層調查地近期發展」,經濟部中央地質調查所特刊,第18號,第85-110頁(2007)。
[7] 林銘郎、李崇正、黃文正、黃文昭,「活動斷層近地表變形特性研究」,經濟部中央地質調查所報告,第9號,臺北,臺灣(2011)。
[8] 盧詩丁、陳柏村、許晉瑋,「臺灣活動斷層研究及未來發展」,大地技師,第15期,第14-25頁(2017)。
[9] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程學系,桃園,臺灣(2013)。
[10] 江富誠,「斷層錯動對地表不同基礎結構物的影響」,碩士論文,國立中央大學土木工程學系,桃園,臺灣(2023)。
[11] 交通部公路工程部,「隧道設計標準」,市區道路及附屬工程設計規範(2003)。
[12] 交通部鐵路類工務部,「鐵路明挖覆蓋隧道設計規範」,交通部鐵路類工務部(2016)
[13] 內政部國土管理署,「建築物混凝土結構設計規範」,建築管理組(2023)
[14] Mohammad Hassan Baziar a,n , Ali Nabizadeh b , Chung Jung Lee c , Wen Yi Hung., “Centrifuge modeling of interaction between reverse faultingand tunnel,” Soil Dynamics and Earthquake Engineering, Open-File Report 151-164 (2014).
[15] Bonilla, M. G., “Evaluation of potential surface faulting and other tectonic deformation,” U.S. Geological Survey, Open-File Report 82-732 (1982).
[16] Bray, J. D., Seed, R. B., Cluff, L. S., and Seed, H. B., “Earthquake fault rupture propagation through soil,” Journal of Geotechnical Engineering, Vol. 120, No. 3, pp.543–561 (1994).
[17] Bray, J. D., Seed, R. B., and Seed, H. B., “Analysis of earthquake fault ruptures propagation through cohesive soil,” Journal of geotechnical engineering, Vol. 120, pp. 562-580 (1994b).
[18] Beer, F. P., Johnston, E. R., and DeWolf, J. T., “ Mechanics of Materials”, McGraw-Hill, USA, (2011)
[19] Chen, W. S., Lee, K. J., Lee, L. S., Streig, A. R., Rubin, C. M., Chen, Y. G., Yang, H. C., Chang, H. C., and Lin, C. W., “Paleoseismic evidence for coseismic growth-fold in the 1999 Chichi earthquake and earlier earthquakes, central Taiwan,” Journal of Asian Earth Sciences, Vol 31, pp. 204-213 (2007).
[20] Cole, D. A., and Lade, P. V., “Influence zones in alluvium over dip-slip faults,” Journal of geotechnical engineering, Vol. 110, pp. 599-615 (1984)
[21] ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
[22] Karamitros, D. K., Bouckovalas, G. D., and Kouretzis, G. P., “Stress analysis of buried steel pipelines at strike-slip fault crossings,” Soil Dynamics and Earthquake Engineering, Vol. 27, pp. 200–211 (2007).
[23] Kelson, K. I., Kang, K. H., Page W.D., Lee, C. T., and Cluff, L. S., “Representative Styles of Deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) Earthquake: Geomorphic Characteristics and Responses of Man-Made Structures,” Bulletin of the Seismological Society of America, Vol. 91, No. 5, pp. 930-952 (2001).
[24] Kelson, K. I., Harder, L. F., Kishida, T., Ryder, I., “Preliminary Observations of Surface Fault Rupture from the April 11, 2011 Mw6.6 Hamadoori Earthquake, Japan,” Geotechnical Extreme Events Reconnaissance, No. GEER-025D (2011).
[25] Lee, J. W., Hamada, M., Tabuchi, G., and Suzuki, K., “Prediction of fault rupture propagation based on physical tests in sandy soil deposit,” 13th World Conference on Earthquake Engineering, B.C., Canada, Paper No. 119 (2004).
[26] Li, C. Y., Wei, Z. Y., Ye, J. Q., Han, Y. B., and Zheng, W. J., “Amounts and styles of coseismic deformation along the northern segment of surface rupture, of the 2008 Wenchuan Mw 7.9 earthquake, China,” Tectonophysics, Vol. 491, pp. 35-58 (2010).
[27] Lin, M. L., Chung C. F., and Jeng F. S., “Deformation of overburden soil induced by thrust fault slip,” Engineering Geology, Vol. 88, pp. 70-89(2006)
[28] McCalpin, J. P., Paleoseismology, Academic Press, USA, pp.171-207 (2009).
[29] Rizkalla, M., and Read, R. S., “Pipeline geohazards planning, design, construction and operations,” ASME Press, New York, USA, pp. 390-443 (2019).
[30] Soegianto, D. P., “Centrifuge Modelling on Dip-Slip Fault Rupture Propagation in Multiple Soil Strata,” Master Thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan (2020).
[31] Takemura, J., Kusakabe, O., and Yao, C., “Development of a fault simulator for soils under large vertical stress in a centrifuge,” ICE, USA, Vol. 20, pp. 118-131 (2020).
[32] Taylor, R. N., “Geotechnical Centrifuge Technology” , CRC Press, USA, pp.19-33 (1994).
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明