以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:79 、訪客IP:18.191.171.136
姓名 陳易禮(Billy Fernandus) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱
(Seismic Performance of Y-Braced Frames with Steel Oval Plate Dampers)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2029-8-31以後開放) 摘要(中) 結構和建築需求對於結構來說都是必不可少的。擁有長跨梁之結構需
要使用支撐來增強結構,以在地震期間保持結構穩定。然而,支撐的使用
通常不符合建築需求,因為其幾何形狀可能會阻礙空間使用。本研究提出
並探討了安裝有不同幾何形狀橢圓形板阻尼器的 Y 型支撐系統,以解決這
一問題。阻尼器作為保護結構構件之保險,通過塑性變形來耗散能量。進
行了一系列測試以評估阻尼器的有效性。結果顯示,應用橢圓形板阻尼器
可以有效提高 Y 型支撐框架的強度、勁度和能量消散能力。此外,建立了
一個具有足夠精度的有限元模擬來估算所提出系統的性能,使得帶有橢圓
形鋼板消能器的 Y 形支撐成為結構耐震加固之有效系統。摘要(英) Both of structural and architectural requirements are essential for the structure. The
structure with long-span beam requires strengthening to maintain the building stability under
seismic excitation. However, the use of concentrically bracing member typically does not meet
the architectural requirements due to the space occupancy. In this study, Y-Brace system
installed with various geometries of oval plate dampers were proposed and investigated to solve
the problem. The damper acts as a structural fuse to dissipate energy through the plastic
deformation. A series of tests were carried out on Y-Braced frame with oval plate damper to
evaluate the effectiveness of the proposed system. It was found from the results that the
application of oval plate damper can effectively increase the strength, stiffness, and energy
dissipation of Y-Braced frame. Furthermore, a finite element simulation with adequate accuracy
was established to estimate the performance of the proposed system, making Y-Brace with oval
plate dampers a competitive strengthening system for seismic resistant structure.關鍵字(中) ★ Y 形支撐
★ 橢圓形鋼板消能器
★ 能量消散
★ 抗震性能關鍵字(英) ★ Y-Brace
★ oval plate damper
★ energy dissipation
★ seismic performance論文目次 TABLE OF CONTENTS
ABSTRACT ................................................................................................................................i
摘要............................................................................................................................................ii
ACKNOWLEDGEMENTS ......................................................................................................iii
TABLE OF CONTENTS ..........................................................................................................iv
LIST OF TABLES ...................................................................................................................vii
LIST OF FIGURES.................................................................................................................viii
CHAPTER 1 INTRODUCTION................................................................................................ 1
1.1 Background...................................................................................................................... 1
1.2 Motivation........................................................................................................................ 1
1.3 Objectives ........................................................................................................................ 3
1.4 Outlines............................................................................................................................ 3
CHAPTER 2 LITERATURE REVIEW..................................................................................... 4
2.1 Structural Performance Evaluation.................................................................................. 4
2.2 Moment Resisting Frame................................................................................................. 4
2.3 Concentrically Braced Frame .......................................................................................... 5
2.4 Knee-Braced Frame ......................................................................................................... 6
2.5 Y-Braced Frame............................................................................................................... 6
2.6 Metallic Yielding Damper ............................................................................................... 7
2.7 Oval Plate Damper........................................................................................................... 8
2.8 Retrofitting and Strengthening Design ............................................................................ 8
CHAPTER 3 METHODOLOGY............................................................................................... 9
3.1 Theory.............................................................................................................................. 9
3.1.1 Strong Column Weak Beam Philosophy ..................................................................9
3.1.2 Oval Plate Dampers........................................................................................... 10
3.1.3 Elastic Strength of Oval Plate Dampers............................................................ 10
v
3.1.4 Inelastic Strength of Oval Plate Dampers ......................................................... 12
3.1.5 Stabilized Concentric Brace .............................................................................. 13
3.1.6 Y-Brace with Oval Plate Damper...................................................................... 13
3.2 Finite Element Analysis................................................................................................. 14
3.2.1 Material Properties.....................................................................................................14
3.2.2 Geometry........................................................................................................... 14
3.2.3 Connections....................................................................................................... 15
3.2.4 Mesh .................................................................................................................. 16
3.2.5 Step Control....................................................................................................... 16
3.2.6 Boundary Joint .................................................................................................. 16
3.2.7 Loading Protocol....................................................................................................... 17
3.2.8 Solution ............................................................................................................. 17
3.2.9 Animation and Visulization............................................................................... 17
3.3 Y-Braced Frame with Oval Plate Dampers Mechanism................................................ 17
CHAPTER 4 EXPERIMENTAL PROGRAM ........................................................................ 18
4.1 General........................................................................................................................... 18
4.2 Material.......................................................................................................................... 18
4.3 Specimen Design ........................................................................................................... 18
4.4 Specimen Construction .................................................................................................. 19
4.5 Instrumentation .............................................................................................................. 20
4.6 Loading Protocol............................................................................................................ 22
4.7 Experimental Set-up ...................................................................................................... 22
CHAPTER 5 RESULT AND OBSERVATIONS.................................................................... 24
5.1 General........................................................................................................................... 24
5.2 Moment Frame............................................................................................................... 24
5.3 YF-20-175...................................................................................................................... 24
5.4. YF-30-210..................................................................................................................... 26
vi
5.5 YF-30-175...................................................................................................................... 27
5.6 YF-30-140...................................................................................................................... 29
CHAPTER 6 COMPARISONS AND DISCUSSIONS ........................................................... 31
6.1 General........................................................................................................................... 31
6.2 Comparison between experimental and analytical results............................................. 31
6.3 Strength.......................................................................................................................... 31
6.4 Stiffness ......................................................................................................................... 32
6.5 Energy dissipation.......................................................................................................... 33
6.6 Deformation capacity..................................................................................................... 34
6.7 Performance evaluation ................................................................................................. 34
6.8 Design Recommendations ............................................................................................. 35
CHAPTER 7 CONCLUSIONS................................................................................................ 38
7.1 Conclusions.................................................................................................................... 38
7.2 Suggestions.................................................................................................................... 39
REFERENCES......................................................................................................................... 40
TABLES ................................................................................................................................... 43
FIGURES ................................................................................................................................. 46
vii
LIST OF TABLES
Table 2.1 Structural performance level and damage of steel frame ........................................ 43
Table 4.1 Material properties ................................................................................................... 44
Table 4.2 Specification of oval plate damper on Y-Braced frame ........................................... 44
Table 4.3 Details material used in tests.................................................................................... 44
Table 4.4 AISC loading protocol applied in the test ............................................................... 44
Table 6.1 Comparison between experimental test and finite element simulation.................... 45
Table 6.2 Normalized stiffness to MF...................................................................................... 45
Table 6.3 Deformation of oval plate damper on Y-Braced frame............................................ 45
Table 6.4 Performance evaluation of testing frame.................................................................. 45
viii
LIST OF FIGURES
Figure 2.1 Moment resisting frame .......................................................................................... 46
Figure 2.2 Concentrically braced frame ................................................................................... 46
Figure 2.3 Frame with Y-brace ............................................................................................... 47
Figure 2.4 Metallic yielding dampers....................................................................................... 47
Figure 3.1 Plastic hinge in oval plate damper .......................................................................... 48
Figure 3.2 Geometry of oval plate damper............................................................................... 48
Figure 3.3 Simplification model of oval plate damper............................................................. 49
Figure 3.4 Canonical equation of force method ....................................................................... 49
Figure 3.5 Internal force ........................................................................................................... 49
Figure 3.6 The plastic zone in oval plate damper .................................................................... 50
Figure 3.7 Schematic diagram of the connection mode between SRDs and diagonal braces . 50
Figure 3.8 Illustration (a) Traditional SRDs; (b) Oval plate damper with stabilized member 51
Figure 3.9 The stabilized concentric brace elements................................................................ 51
Figure 3.10 Stabilized brace with oval plate damper .............................................................. 52
Figure 3.11 Sliding mechanism................................................................................................ 52
Figure 3.12 Y-brace with oval plate damper............................................................................ 53
Figure 3.13 Y-braced frame with oval plate dampers ............................................................. 53
Figure 3.14 Chaboche kinematic hardening ............................................................................ 54
Figure 3.15 Contact between hinges, columns, and beam ...................................................... 55
Figure 3.16 Contact between braces and hinges ..................................................................... 55
Figure 3.17 Contact in stabilized brace .................................................................................... 56
Figure 3.18 Contact between damper and stabilized brace ..................................................... 56
Figure 3.19 Mesh of Y-braced frame in finite element simulation ......................................... 57
Figure 3.20 Boundary joint between braces and hinges .......................................................... 57
Figure 3.21 Boundary joint in stabilized brace ........................................................................ 58
ix
Figure 3.22 Boundary condition of Y-braced frame in finite element simulation ................... 58
Figure 3.23 Results of Y-braced frame in finite element simulation ....................................... 59
Figure 3.24 Mechanism of Y-brace with oval plate damper under compression .................... 59
Figure 4.1 Illustration test set-up.............................................................................................. 60
Figure 4.2 Stress-strain relationships ....................................................................................... 60
Figure 4.3 Set-up details of the test .......................................................................................... 61
Figure 4.4 Stress-strain relationships ....................................................................................... 62
Figure 4.5 The specimen label description............................................................................... 62
Figure 4.6 The details of (a) corner hinge; (b) column’s hinge; (c) beam’s hinge................... 63
Figure 4.7 The details of (a) long brace; (b) short brace; (c) stabilized brace.......................... 64
Figure 4.8 The pinned connection ............................................................................................ 65
Figure 4.9 Actuator................................................................................................................... 65
Figure 4.10 LVDT used for frame test ..................................................................................... 66
Figure 4.11 Strain gauge used for the frame test...................................................................... 66
Figure 4.12 Arrangement of strain gauge in the test ................................................................ 67
Figure 4.13 AISC loading protocol applied in frame test......................................................... 67
Figure 4.14 Compositions of Y-brace (a)oval plate dampers; (b) brace; (c) hinge.................. 68
MF
Figure 5.1 Hysteresis loop and backbone curve of MF............................................................ 69
Figure 5.2 The failure pattern in the beam-column connection (a) bottom; (b) top................. 69
YF20-175
Figure 5.3 Hysteresis loop and backbone curve of YF20-175 ................................................. 70
Figure 5.4 YF20-175 subjected to the load .............................................................................. 70
Figure 5.5 Strain gauge responses of YF20-175 (a) damper; (b) beam; (c) brace; (d) column71
Figure 5.6 YF20-175 flaking point at 1% drift ratio ................................................................ 72
x
Figure 5.7 YF20-175 flaking point near the beam-column connection ................................. 72
Figure 5.8 YF20-175 flaking point near the beam’s hinge....................................................... 72
Figure 5.9 Failure modes of YF20-175 at 5% drift ratio (a) tension; (b) compression............ 73
Figure 5.10 Failure pattern of equipped damper in YF20-175................................................. 73
YF30-210
Figure 5.11 Hysteresis loop and backbone curve of YF30-210 ............................................... 74
Figure 5.12 YF30-210 subjected to the load ............................................................................ 74
Figure 5.13 Strain gauge responses of YF30-210 (a)damper; (b)beam; (c)brace; (d)column . 75
Figure 5.14 YF30-210 flaking point at 1.5% drift ratio ........................................................... 76
Figure 5.15 YF30-210 flaking point near the beam-column connection ................................. 76
Figure 5.16 YF30-210 flaking point near the beam’s hinge..................................................... 76
Figure 5.17 Failure modes of YF30-210 at 5% drift ratio (a) tension; (b) compression.......... 77
Figure 5.18 Failure pattern of equipped damper in YF30-210................................................. 77
YF30-175
Figure 5.19 Hysteresis loop and backbone curve of YF30-175 ............................................... 78
Figure 5.20 YF30-175 subjected to the load ............................................................................ 78
Figure 5.21 Strain gauge responses of YF30-175 (a)damper; (b)beam; (c)brace; (d)column . 79
Figure 5.22 YF30-175 flaking point at 1.5% drift ratio ........................................................... 80
Figure 5.23 YF30-175 flaking point near the beam-column connection ................................. 80
Figure 5.24 YF30-175 flaking point near the beam’s hinge..................................................... 80
Figure 5.25 Failure modes of YF30-175 at 5% drift ratio (a) tension; (b) compression.......... 81
Figure 5.26 Failure pattern of equipped damper in YF30-175................................................. 81
YF30-140
Figure 5.27 Hysteresis loop and backbone curve of YF30-140 ............................................... 82
Figure 5.28 YF30-140 subjected to the load ............................................................................ 82
xi
Figure 5.29 Strain gauge responses of YF30-140 (a)damper; (b)beam; (c)brace; (d)column . 83
Figure 5.30 YF30-140 flaking point at 1.5% drift ratio ........................................................... 84
Figure 5.31 YF30-140 flaking point near the beam-column connection ................................. 84
Figure 5.32 YF30-140 flaking point near the beam’s hinge..................................................... 84
Figure 5.33 Failure modes of YF30-140 at 5% drift ratio (a) tension; (b) compression.......... 85
Figure 5.34 Failure pattern of equipped damper in YF30-140................................................. 86
Figure 6.1 Comparison of hysteretic loop between simulation and experimental results........ 87
Figure 6.2 The prediction of analytical result (a) streen on beam; (b) strees on damper......... 88
Figure 6.3 Backbone curves of all specimens .......................................................................... 89
Figure 6.4 Strength influenced by eccentricity......................................................................... 89
Figure 6.5 Strength influenced by depth .................................................................................. 90
Figure 6.6 Stiffness of all specimens........................................................................................ 90
Figure 6.7 Stiffness influenced by eccentricity ........................................................................ 91
Figure 6.8 Stiffness influenced by depth.................................................................................. 91
Figure 6.9 Normalized stiffness of all specimens..................................................................... 92
Figure 6.10 Cumulative energy dissipation of all specimens................................................... 92
Figure 6.11 Cumulative energy dissipation influenced by eccentricity ................................... 93
Figure 6.12 Cumulative energy dissipation influenced by epth ............................................... 93
Figure 6.13 Recommendation for the damper design .............................................................. 94
Figure 6.14 Performance evaluation of all specimens.............................................................. 94
Figure 6.15 Performance evaluation influenced by eccentricity .............................................. 95
Figure 6.16 Performance evaluation influenced by depth........................................................ 95
Figure 6.17 Euler’s critical load condition .............................................................................. 96參考文獻 [1] Martinelli L, Mulas MG, Perotti F. The seismic response of concentrically braced moment
resisting steel frames. Earthq Eng Struc Dyn 1996;25(11):1275–99.
[2] Yoo JH, Lehman DE, Roeder CW. Influence of connection design parameters on the seismic
performance of braced frames. J Const Steel Res 2008;64(6):607–23.
[3] 余子豪 (2016),具摩擦及挫屈控制機制之丫型隅撐構架耐震行為研究,國立中央大學
土木工程學系,碩士論文.
[4] FEMA 356. Prestandard and Commentary for the Seismic Rehabilitation of Buildings,
Federal Emergency Management Agency, Nov 2000.
[5] Mazzolani FM, Herrera R. Behaviour of Steel Structures in Seismic Areas. Taylor and
Francis Group: Stessa; 2012.
[6] Halim, H., Seismic Performance of A-Braced Frames with Amplified Deformation Steel
Curved Dampers, Doctoral Dissertation, Department of Civil Engineering, National Central
University, Taiwan, 2019.
[7] Khandelwal K, El-Tawil S. Collapse behavior of steel special moment resisting frame
connections, J Struct Eng 2007;133:646-655
[8] Asgarian B, Sadrinezhad A, Alanjari P. Seismic performance evaluation of steel moment
resisting frames through incremental dynamics analysis. J Constr Steel Res 2010;66:178-190.
[9] Zareian F, Lignos DG, Krawinkler H. Evaluation of seismic collapse performance of steel
special moment resisting frames using FEMA P965 (ATC-63) methodology. ASCE Struct
Congress 2010;1275.
[10] Kurt, M.M. and Abolhassan, A.A. Steel Semirigid Column-Tree Moment Resisting Frame
Seismic Behaviour, Journal of Structural Engineering ASCE, pp.1243, 2003.
[11] Dubina, D. and Stratan, A. Behaviour of welded connections of moment resisting frames
beam-to-column joints, Engineering Structures, 24:1431-40, 2002.
[12] E.P. Popov, K. Takanashi and C.W. Roeder, Structural Steel Bracing System: Behaviour
Under Cyclic Loading, University of California, Berkeley, USA, 1976.
41
[13] W.N. Deulkar, C. D. Modhera and H. S. Patil, Buckling Restrained Braces Vibration
Control of Building Structure, Pamukkale University Journal of Engineering Sciences, vol. 22,
no. 3, pp. 160-170, 2016.
[14] K.-S. Choi, J.-Y. Park and H.-J. Kim, Numerical Investigation on Design Requirements
for Steel Ordinary Braced Frames, Engineering Structures, vol. 27, no. 2, pp. 455-478, 2020.
[15] H.-L. Hsu and L, Z. C., Seismic Performance of Steel Frames with Controlled Buckling
Mechanism in Knee Braces, Journal of Constructional Steel Research, 107:50-60, 2015.
[16] M.R. Solaimani Nezhad, M. Mahmoudi, Experimental and Analytical Evaluation of The
Seismic Performance of Y-Shaped Braces Equipped with Yielding Diagonal Dampers, Journal
of Building Engineering 42 (2021) 102362
[17] S. Majid Zamani, A. Vafaei, C. Desai, M. Rasouli, Experimental Investigation of The
Behaviour of Steel Frames with Y-Shaped Concentric Bracing, J. Constr. Steel Res.70 (2012)
12-27
[18] A. Javanmardi, Z. Ibrahim, K. Ghaedi, H.B. Ghadim and M.U. Hanif, “State-of-the-ArtReview of Metallic Damper; Testing, Development and Implementation, “Archives of
Computational Methods in Engineering, vol. 27, no. 2, pp. 455-478, 2020.
[19] Bergman D. Evaluation of cyclic testing of steel-plate devices for added damping and
stiffness. Ann Arbor Mich.: Dept. of Civil Engineering University of Michigan;
1987.
[20] Tsai K, Chen H, Hong C, Su Y. Design of Steel Triangular Plate Energy Absorbers for
Seismic-Resistant Construction. Earthq Spectra 1993;9:505-28.
[21] Azandariani, M. G., Rousta, A. M., Usefvand, E., Abdolmaleki, H., & Azandariani, A. G.
Improved Seismic Behavior and Performance of Energy-Absorbing Systems Constructed with
Steel Rings. Journal Structures, 29, 534–548.
[22] Maleki S, Bagheri S. Pipe damper, Part I: Experimental and analytical study. J Constr Steel
Res 2010;66:1088-95.
[23] H.-L. Hsu and H. Halim, Improving Seismic Performance of Framed Structures with Steel
Curved Dampers, Engineering Structures, vol. 130, pp. 99-111, 2017.
42
[24] Thanh- Trung, Dang. Performance Improvement of Braced Frames with Oval Plate
Dampers, Master Thesis, Deparment of Civil Engineering, National Central University, Taiwan,
2021.
[25] Dawood, M. Fiber-reinforced polymer (FRP) composites for strengthening steel structures,
Civil and Structural Engineering, 382-409, 2013
[26] America Institute of Steel Construction. (2016), Seismic Provisions for Structural Steel
Building, AISC 341-16, Chicago, IL.
[27] I. A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, Second Edition,
Cham, Switzerland: Springer Nature Switzerland, 2021.
[28] Z.Andalib, M. A. Kheyroddin, Ali and M. Bazzaz, “Experimental investigation of the
ductility and performance of steel rings constructed from plates”, Journal of Constructional
Steel Research , pp.77-88, 2014.
[29] Halim, H., Performance Improvement of Semi-rigid Moment Frame with Curved Dampers,
Master Thesis, Department of Civil Engineering, National Central University, Taiwan, 2015.
[30] 陳聖文(2019),A 型隅撐鋼構架耐震性能研究,國立中央大學土木工程學系,碩士論
文
[31] America Institute of Steel Construction. (2016), Specification for Structural Steel
Buildings, AISC 360-16, Chicago, IL.指導教授 許協隆 審核日期 2024-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare