博碩士論文 110322007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.188.43.85
姓名 邱郁佐(yu-tso chiu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鋼筋混凝土剪力牆機率式地震風險評估架構之開發與應用
相關論文
★ Nonlinear Analysis of Reinforced Concrete Structures using The Novel Implicit Nonlinear Dynamic Finite Element method★ Abaqus軟體於3D列印混凝土分析之開發與應用
★ 數據驅動之鋼筋混凝土構架機率式地震風險評估★ 結合深度學習與房屋街景圖像之機率式地震風險評估
★ 條件生成對抗網路於鋼筋混凝土柱遲滯迴圈預測之開發與應用★ 基於注意力機制的雙向長短型記憶神經網絡模型於地震預測之開發與應用
★ 含物理約束之長短型記憶神經網絡模型於結構物動力反應預測之開發與應用★ 鋼 筋 混 凝 土 構 架 含 填 充 磚 牆 機 率 式 地 震 風 險 分 析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 本研究主要探討鋼筋混凝土剪力牆在地震作用下的性能,目的在建立一個自動化工具來進行剪力牆的非線性動力分析和地震風險評估。研究首先利用多篇文獻中的試體數據建立了一個全面的試體資料庫,涵蓋了各種不同材料特性和幾何參數的鋼筋混凝土構件。隨後,採用OpenSees軟體進行剪力牆模型的建立與驗證,確保模型能夠準確模擬實際結構在地震作用下的動力行為。
透過機率式地震風險評估方法,本研究對不同地震歷時下剪力牆的耐震性能進行了詳細分析。利用這些數據,建立了相應的易損曲線,這些曲線能夠反映出不同強度地震作用下結構的損壞概率。研究結果顯示,自動化工具能夠快速、準確地評估建築物的地震風險。
此外,本研究還探討了不同地震特性對鋼筋混凝土剪力牆性能的影響,如近場地震和遠場地震的不同影響。研究結果表明,自動化工具在這些不同情境下均能提供可靠的評估結果。此工具不僅能夠減少人工計算的時間和誤差,還能提高地震風險評估的效率和精確性。
總結而言,本研究為台灣地區鋼筋混凝土建築物的耐震評估提供了科學依據,並展示了自動化工具在地震風險評估中的應用潛力。這些成果將有助於相關部門在地震防災和減災工作中做出更為科學和有效的決策,提升建築物的耐震性能和安全性。
摘要(英) This study investigates the performance of reinforced concrete RC shear walls under seismic excitations, aiming to establish an automated tool for nonlinear dynamic analysis and seismic risk assessment. A comprehensive specimen database was constructed using data from various studies, encompassing diverse material properties and geometric parameters of RC components. The OpenSees software was utilized to build and validate shear wall models, ensuring accurate simulation of dynamic behavior under seismic loading.
Using a probabilistic seismic risk assessment method, this research provides detailed analysis of buildings′ seismic performance under different earthquake scenarios. Fragility curves were developed to reflect the damage probability under varying seismic intensities. The results indicate that the automated tool can swiftly and accurately evaluate seismic risk, providing damage predictions and repair recommendations.
This study also examines the impact of different seismic characteristics on the performance of RC shear walls. The findings demonstrate the tool′s reliability across various scenarios, reducing time and errors associated with manual calculations while enhancing assessment efficiency and accuracy.
In conclusion, this research offers a scientific basis for the seismic evaluation of RC buildings in Taiwan and showcases the potential application of the automated tool in seismic risk assessment. These outcomes will assist relevant departments in making more informed and effective decisions in earthquake disaster prevention and mitigation.
關鍵字(中) ★ OpenSees
★ 增量動力分析
★ RC剪力牆
★ 遲滯迴圈
關鍵字(英) ★ OpenSees
★ Probabilistic Assessment Method
★ Incremental Dynamics Analysis
★ RC Shear Wall
★ Hysteresis Loops
論文目次 一、 緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 2
1-3 論文架構 4
二、 剪力牆模型探討 5
2-1 OpenSees 簡介 5
2-2 OpenSees系統架構 6
2-3 剪力牆模型介紹 8
2-4 鋼筋滑移MVLEM模型建立與係數解說 19
2-4-1 垂直彈簧係數介紹 19
2-4-2 剪切彈簧係數介紹 22
2-4-3 鋼筋滑移彈簧係數介紹 24
三、 自動化模型建立與驗證 26
3-1 試體資料庫建立 26
3-2 選擇試體建立建模資料庫 28
3-3 自動化建模流程 29
3-4 建立OpenSees模型並導入彈簧參數 30
3-5 剪力牆模型驗證 49
四、 機率式地震風險評估 63
4-1 地震歷時震波挑選 64
4-2 量動力分析 66
4-3 定義倒塌準則 68
4-4 機率地震需求模型(PSDM)與易損曲線之建立 69
4-4-1 易損曲線之建立 71
4-5 判定耐震性能 71
五、 未來展望與結論 73
5-1 結論 73
5-2 未來展望 74
參考文獻 75
參考文獻 [1] ACT-40, Seismic evaluation and retrofit of concrete buildings. Report No. SSC 96-01, Applied Technology Council, 1996.
[2] FEMA 273, NEHRP Guidelines for the seismic rehabilitation of buildings, Federal Emergency Management Agency, Washington, D.C., 1997.
[3] 鍾立來、葉勇凱、簡文郁、柴駿甫、蕭輔沛、沈文成、邱聰智、周德光、趙宜峰、楊耀昇、 黃世建,(2008),「校舍結構耐震評估與補強技術手冊」,國家地震工程研究中心報告, NCREE-08-023,台北。
[4] FEMA 356, F. E. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, DC.
[5] Kircher, C., Deierlein, G., Hooper, J., Krawinkler, H., Mahin, S., Shing, B., & Wallace, J. (2010). Evaluation of the FEMA P-695 methodology for quantification of building seismic performance factors.
[6] FEMA P-58. (2012). Federal Emergency Management Agency: Seismic Performance Assessment of Buildings.
[7] Lefas, I.D. and Kotsovos, M.D. (1990) NLFE Analysis of RC Structural Walls and Design Implications. Journal of Structural Engineering, 116, 146-164.
[8] Kotsovos, M.K., Pavlovic, M.N. and Lefas, I.D. (1992) Two and Three Dimensional Nonlinear Finite Element Analysis of Structural Walls. In: Fajfar, P. and Krawinkler, H., Eds., Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Elsevier Applied Science, New York, 215-217.
[9] Vecchio, F.J. (1992) Finite Element Modeling of Concrete Expansion and Confinement. Journal of Structural Engineering, 118, 2390-2406.
[10] Linde, P. and Bachmann, H. (1994) Dynamic Modeling and Design of Earthquake Resistant Walls. Earthquake Engineering and Structural Dynamics, 23, 1331-1350.
[11] Kaybeyasawa, T., Shinohara, H. and Kabeyasawa, S. (1984) US-Japan Cooperative Research on R/C Full-Scale Building Test, Part 5: Discussion of Dynamic Response System. Proceedings 8th of WCEE, San Francisco, 24-28 July 1984, 1-4.
[12] Vulcano, A. and Bertero, V.V. (1987) Analytical Model for Predicating the Lateral Response of RC Shear Wall: Evaluation of Their Reliability. EERC.
[13] Zhao, J. and Sritharan, S. (2007) Modeling of Strain Penetration Effects in Fiber-Based Analysis of Reinforced Concrete Structures. ACI Structural Journal, 104, 133-141.
[14] Kircher, C., Deierlein, G., Hooper, J., Krawinkler, H., Mahin, S., Shing, B., & Wallace, J. (2010). Evaluation of the FEMA P-695 methodology for quantification of building seismic performance factors.
[15] ASCE 41-13 (2014) “Seismic rehabilitation of existing building.” American Society of Civil Engineers
[16] 內政部營建署(2022)。建築物耐震設計規範及解說,中華民國內政部營建署,台北,台灣。
[17] 周延、鄭敏元、Leonardus S.B. Wibowo(2018)。高強度鋼筋混凝土低矮結構牆往復載重行為。中國土木水利工程學刊,30(3),181-189。
[18] PEER-TBI Task7 (2010) Modeling and acceptance criteria for seismic design and analysis of tall buildings. PEER Report No. 2010/111, University of California at Berkeley.
[19] Han, lei Xiao. “Numerical Analysis of Cyclic Loading Test of Shear Walls Based on OpenSEES.” World Conference on Earthquake Engineering, 2008
[20] Lu XL, Jiang C, Jiang HJ. A benchmark model of mega-tall Buildings and analysis of its seismic responses. Structural Engineers, 2015a, 31(4): 100-107. (in Chinese)
[21] 邱騰億(2019)。鋼筋混凝土低矮剪力牆之等效勁度。﹝碩士論文。國立臺灣科技大學﹞臺灣博碩士論文知識加值系統。
[22] 葉瑞德(2002)。高型RC剪力牆-構架互制實驗研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
[23] 余明松(2002)。低型R.C剪力牆-構架互制實驗研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
[24] 謝秉倫(2017)。高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之剪力行為研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
[25] 黃明田(2003)。韌性鋼筋混凝土剪力牆-構架互制實驗研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
[26] 陈俊清. 基于MVLEM考虑钢筋滑移的RC剪力墙有限元分析. 土木工程, 2021, 10(11): 1197-1205.
[27] Kolozvari K., Orakcal K., and Wallace J. W. (2015c). “Shear-Flexure Interaction Modeling of reinforced Concrete Structural Walls and Columns under Reversed Cyclic Loading”, Pacific Earthquake Engineering Research Center, University of California, Berkeley, PEER Report No. 2015/12
[28] Kolozvari K. (2013). “Analytical Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls”, PhD Dissertation, University of California, Los Angeles.
[29] 宋亞新,考慮土-柱-結構相互作用的框剪結構彈塑性地震反應分析。同濟大學博士學位論文,1998。
[30] Milev J 1, Two dimensional analytical model of reinforced concrete shear walls. Proc. of 11th WCEE, 1996.
[31] Linde P. Bachmann H. Dynamic modeling and design of earthquake-resistant walls. EES 1331-1350
[32] Lu XZ, Xie LL, Guan H, Huang YL, Lu X, A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees, Finite Elements in Analysis & Design, 2015, 98: 14-25.
[33] XIE Lin-lin, HUANG Yu-li, LU Xin-zheng, LIN Kai-qi, YE Lie-ping. ELASTO-PLASTIC ANALYSIS FOR SUPER TALL RC FRAME-CORE TUBE STRUCTURES BASED ON OPENSEES. Engineering Mechanics, 2014, 31(1): 64-71.
[34] ACI Committee 318, 2014, "Building Code Requirements for Structural Concrete and Commentary," American Concrete Institute, Farmington Hills, Michigan, 519 pp.
[35] 內政部, “混凝土結構設計規範",2011
[36] 內政部, “結構混凝土施工規範",2002
[37] Cheng, M.–Y.; Hung, S.–H.; Lequesne, R. D.; and Lepage, A., 2016, “Earthquake-Resistant Squat Walls Reinforced with High Strength Steel,” ACI Structural Journal, V. 113, No.5, Sep.- Oct., pp. 1065-1076.
[38] Chen, P. Y., & Guan, X. (2023). A multi-source data-driven approach for evaluating the seismic response of non-ductile reinforced concrete moment frames. Engineering Structures, 278, 115452.
[39] Wibowo, L. S. B., 2017 “Strength and Deformation Capacity of High-Shear Demand RC Squat Wall using High-Strength Materials,” Ph.D. Dissertation, Department of Civil and Construction Engineering, University of Science and Technology, Taipei, Taiwan
[40] Vulcano A, Bertero V V. Analytical model for predicting the lateral response of RC shear wall: evaluation of their reliability. EERC-87/19.
指導教授 陳鵬宇 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明