參考文獻 |
[1] 于妙善 ,2017,在需求與供應不確定下自行車共享系統多站點間之供需媒合,碩
士論文,臺灣大學工業工程學系,臺北市。
[2] 呂千慈,鍾易詩,馮正民,2018,環境空間與站點數對公共自行車租借量之影響
分析,碩士論文,國立交通大學運輸與物流管理學系,新竹市。
[3] 陳信宏,2022,基於階級關係之共享單車的調度策略,碩士論文,中原大學資訊
工程學系,桃園市。
[4] 陳惠國,2023,運輸規劃-基礎與進階,桃園市:五南。
[5] 陳惠國,2024,運輸工程,桃園市:五南。
[6] Azari, A., Papapetrou, P., Denic, S., Peters, G. (2019). Cellular traffic prediction and
classification: A comparative evaluation of LSTM and ARIMA. In Discovery Science:
22nd International Conference, DS 2019, Split, Croatia, October 28–30, 2019,
Proceedings 22 ,129-144. Springer International Publishing. doi:
https://doi.org/10.1007/978-3-030-33778-0_11
[7] Agresti, A. (2015). Foundations of linear and generalized linear models.
[8] Braun, L. M., Rodriguez, D. A., Cole-Hunter, T., Ambros, A., Donaire-Gonzalez, D.,
Jerrett, M., Nazelle, A. (2016). Short-term planning and policy interventions to promote
cycling in urban centers: Findings from a commute mode choice analysis in Barcelona,
Spain. Transportation Research Part A: Policy and Practice, 89, 164-183.
[9] Collini, E., Nesi, P., Pantaleo, G. (2021). Deep learning for short-term prediction of
available bikes on bike-sharing stations. IEEE Access, 9, 124337-124347. doi:
10.1109/ACCESS.2021.3110794.
[10] Chung, J., Gulcehre, C., Cho, K., Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. doi:
https://doi.org/10.48550/arXiv.1412.3555
42
[11] Chen, T., Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining , 785-794. doi: https://doi.org/10.1145/2939672.2939785
[12] Chen, L. T., Hsu, Y. W. (2020). Socio-ecological predictors of frequent bike share trips:
Do purposes matter?. International Journal of Environmental Research and Public
Health, 17(20), 7640. Doi: https://www.mdpi.com/1660-4601/17/20/7640
[13] Feng, Y., Wang, S. (2017). A forecast for bicycle rental demand based on random forests
and multiple linear regression. In 2017 IEEE/ACIS 16th International Conference on
Computer and Information Science (ICIS) , 101-105. doi: 10.1109/ICIS.2017.7959977.
[14] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of statistics, 1189-1232. doi: https://www.jstor.org/stable/2699986
[15] Guidon, S., Becker, H., Axhausen, K. (2019). Avoiding stranded bicycles in free-floating
bicycle-sharing systems: using survival analysis to derive operational rules for
rebalancing. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 1703
1708. IEEE.
[16] Guidon, S., Reck, D. J., Axhausen, K. (2020). Expanding a (n)(electric) bicycle-sharing
system to a new city: Prediction of demand with spatial regression and random forests.
Journal of Transport Geography, 84, 102692. doi:
https://doi.org/10.1016/j.jtrangeo.2020.102692
[17] Gu, X., Tang, X., Chen, T., Liu, X. (2024). Predicting the network shift of large urban
agglomerations in China using the deep-learning gravity model: A perspective of
population migration. Cities, 145, 104680. doi:
https://doi.org/10.1016/j.cities.2023.104680
[18] Habib, K. N., Mann, J., Mahmoud, M., & Weiss, A. (2014). Synopsis of bicycle demand
in the City of Toronto: Investigating the effects of perception, consciousness and
comfortability on the purpose of biking and bike ownership. Transportation research
43
part A: policy and practice, 70, 67-80.
[19] Hu, Z., Huang, K., Zhang, E., Ge, Q. A., Yang, X. (2021). Rebalancing strategy for bike
sharing systems based on the model of level of detail. Journal of advanced
transportation, 1-15. doi: https://doi.org/10.1155/2021/3790888
[20] Heanue, K. E., Pyers, C. E. (1966). A comparative evaluation of trip distribution
procedures. Highway Research Record, 114, 20-50.
[21] Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735.
[22] Jiang, W. (2022). Bike sharing usage prediction with deep learning: a survey. Neural
Computing and Applications, 34(18), 15369-15385. doi: https://doi.org/10.1007/s00521
022-07380-5
[23] Liu, J., Li, Q., Qu, M., Chen, W., Yang, J., Xiong, H., Fu, Y. (2015). Station site
optimization in bike sharing systems. In 2015 IEEE International Conference on Data
Mining , 883-888. doi:10.1109/ICDM.2015.99
[24] Liang, Y., Ding, F., Huang, G., Zhao, Z. (2023). Deep trip generation with graph neural
networks for bike sharing system expansion. Transportation Research Part C: Emerging
Technologies, 154, 104241. doi: https://doi.org/10.1016/j.trc.2023.104241
[25] Lawson, H. C., Dearinger, J. A. (1967). A comparison of four work trip distribution
models. Journal of the Highway Division, 93(2), 1-25. doi:
https://doi.org/10.1061/JHCEA2.0000245
[26] Lenormand, M., Bassolas, A., Ramasco, J. J. (2016). Systematic comparison of trip
distribution laws and models. Journal of Transport Geography, 51, 158-169. doi:
https://doi.org/10.1016/j.jtrangeo.2015.12.008
[27] Lahoorpoor, B., Faroqi, H., Sadeghi-Niaraki, A., Choi, S. M. (2019). Spatial cluster
based model for static rebalancing bike sharing problem. Sustainability, 11(11), 3205.
doi: https://www.mdpi.com/2071-1050/11/11/3205
44
[28] Ma, X., Yin, Y., Jin, Y., He, M., Zhu, M. (2022). Short-term prediction of bike-sharing
demand using multi-source data: a spatial-temporal graph attentional LSTM approach.
Applied Sciences, 12(3), 1161.
[29] Mateo-Babiano, I., Bean, R., Corcoran, J., & Pojani, D. (2016). How does our natural
and built environment affect the use of bicycle sharing?. Transportation research part A:
policy and practice, 94, 295-307.
[30] Mateo-Babiano, I., Kumar, S., Mejia, A. (2017). Bicycle sharing in Asia: a stakeholder
perception and possible futures. Transportation research procedia, 25, 4966-4978. doi:
https://doi.org/10.1016/j.trpro.2017.05.375
[31] Midgley, P. (2011). Bicycle-sharing schemes: enhancing sustainable mobility in urban
areas. United Nations, Department of Economic and Social Affairs, 8, 1-12.
[32] Nagy, A. M., Simon, V. (2018). Survey on traffic prediction in smart cities. Pervasive
and Mobile Computing, 50, 148-163. doi: https://doi.org/10.1016/j.pmcj.2018.07.004
[33] Pan, Y., Zheng, R. C., Zhang, J., Yao, X. (2019). Predicting bike sharing demand using
recurrent neural networks. Procedia computer science, 147, 562-566. doi:
https://doi.org/10.1016/j.procs.2019.01.217
[34] Pourebrahim, N., Sultana, S., Thill, J. C., Mohanty, S. (2018). Enhancing trip distribution
prediction with twitter data: comparison of neural network and gravity models. In
Proceedings of the 2nd acm sigspatial international workshop on ai for geographic
knowledge discovery, 5-8. doi: https://doi.org/10.1145/3281548.3281555
[35] Pitombo, C. S., de Souza, A. D., Lindner, A. (2017). Comparing decision tree algorithms
to estimate intercity trip distribution. Transportation Research Part C: Emerging
Technologies, 77, 16-32. doi: https://doi.org/10.1016/j.trc.2017.01.009
[36] Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323(6088), 533-536. doi:
https://www.nature.com/articles/323533a0
45
[37] Simini, F., Barlacchi, G., Luca, M., Pappalardo, L. (2021). A deep gravity model for
mobility flows generation. Nature communications, 12(1), 6576. doi:
https://doi.org/10.1038/s41467-021-26752-4
[38] Sohrabi, S., Paleti, R., Balan, L., Cetin, M. (2020). Real-time prediction of public bike
sharing system demand using generalized extreme value count model. Transportation
Research Part A: Policy and Practice, 133, 325-336.
[39] Song, J., Zhang, L., Qin, Z., Ramli, M. A. (2022). Spatiotemporal evolving patterns of
bike-share mobility networks and their associations with land-use conditions before and
after the COVID-19 outbreak. Physica A: Statistical Mechanics and its
Applications, 592, 126819.
[40] Subramanian, M., Cho, J., Veerappampalayam Easwaramoorthy, S., Murugesan, A., &
Chinnasamy, R. (2023). Enhancing Sustainable Transportation: AI-Driven Bike Demand
Forecasting in Smart Cities. Sustainability, 15(18), 13840.
[41] Sun, Y., Li, Y., Borozan, S., Wang, G., Qiu, J., Strbac, G. (2023). Battery swapping
dispatch for self-sustained highway energy system based on spatiotemporal deep
learning traffic flow prediction. IEEE Transactions on Industry Applications, 60(1). doi:
10.1109/TIA.2023.3321713.
[42] Sathishkumar, V. E., Park, J., Cho, Y. (2020). Using data mining techniques for bike
sharing demand prediction in metropolitan city. Computer Communications, 153, 353
366. doi: https://doi.org/10.1016/j.comcom.2020.02.007
[43] Sun, J., He, Y., Zhang, J. (2023). A Cluster-Then-Route Framework for Bike Rebalancing
in Free-Floating Bike-Sharing Systems. Sustainability, 15(22), 15994. doi:
https://www.mdpi.com/2071-1050/15/22/15994
[44] Tekouabou, S. C. K. (2021). Intelligent management of bike sharing in smart cities using
machine learning and Internet of Things. Sustainable Cities and Society, 67, 102702. doi:
https://doi.org/10.1016/j.scs.2020.102702
46
[45] Tillema, F., Van Zuilekom, K. M., Van Maarseveen, M. F. (2006). Comparison of neural
networks and gravity models in trip distribution. Computer‐Aided Civil and
Infrastructure Engineering, 21(2), 104-119. doi: https://doi.org/10.1111/j.1467
8667.2005.00421.x
[46] Vallez, C. M., Castro, M., Contreras, D. (2021). Challenges and opportunities in dock
based bike-sharing rebalancing: A systematic review. Sustainability, 13(4), 1829. doi:
https://doi.org/10.3390/su13041829
[47] VE, S., Cho, Y. (2024). Season wise bike sharing demand analysis using random forest
algorithm. Computational Intelligence, 40(1), e12287. doi:
https://doi.org/10.1111/coin.12287
[48] Wu, X., Lyu, C., Wang, Z., Liu, Z. (2019). Station-level hourly bike demand prediction
for dynamic repositioning in bike sharing systems. In Smart transportation systems
2019, 19-27. doi:https://doi.org/10.1007/978-981-13-8683-1_3
[49] Xu, J., Huang, E., Chen, C. H., Lee, L. H. (2015). Simulation optimization: A review and
exploration in the new era of cloud computing and big data. Asia-Pacific Journal of
Operational Research, 32(3), 1550019. doi:
https://doi.org/10.1142/S0217595915500190
[50] Yang, Y., Jia, B., Yan, X. Y., Chen, Y., Song, D., Zhi, D., Gao, Z. (2023). Estimating
intercity heavy truck mobility flows using the deep gravity framework. Transportation
Research Part E: Logistics and Transportation Review, 179, 103320. doi:
https://doi.org/10.1016/j.tre.2023.103320
[51] Yamak, P. T., Yujian, L., Gadosey, P. K. (2019). A comparison between arima, lstm, and
gru for time series forecasting. In Proceedings of the 2019 2nd international conference
on algorithms, computing and artificial intelligence, 49-55. doi:
https://doi.org/10.1145/3377713.3377722
[52] Yang, S., Yu, X., Zhou, Y. (2020). Lstm and gru neural network performance comparison
47
study: Taking yelp review dataset as an example. In 2020 International workshop on
electronic communication and artificial intelligence (IWECAI), 98-101. doi:
10.1109/IWECAI50956.2020.00027.
[53] Zhang, S. M., Su, X., Jiang, X. H., Chen, M. L., Wu, T. Y. (2019). A Traffic Prediction
Method of Bicycle-sharing based on Long and Short term Memory Network. J. Netw.
Intell., 4(2), 17-29. |