博碩士論文 112322052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.221.97.20
姓名 王昱升(Yu-Sheng Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 逆斷層錯動下隧道變位之物理模型模擬
(Physical Model Simulation of Tunnel Deformation under Reverse Fault Displacement)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-30以後開放)
摘要(中) 在地質學和土木大地工程領域中,斷層和隧道的研究至關重要。特別是在地震活
動頻繁的地區,斷層帶和地質破碎帶的存在對隧道的設計和施工造成不確定性,可能
對隧道的穩定性和安全性構成嚴重威脅。由於現地的土層和斷層難以直接觀察,資訊
量不足導致分析困難。土木工程師為了模擬各種破壞行為,需要藉由簡化問題並建構
數值或物理模型。然而,全尺寸物理模型的準備過程耗時且經濟性差;數值模擬則需
要基於現地調查或簡易物理模型試驗,前置作業相對繁瑣;此外,離心模型試驗的試
驗過程也耗時,具備離心機的研究機構相對稀少。為了解決這些挑戰,本研究透過 1g
斷層試驗,模擬斷層與隧道的互制行為,瞭解斷層對隧道穩定性的影響,並與離心試
驗模型之結果進行比較,探討兩者之間的相關性,以確定 1g 斷層試驗的可靠性。研
究內容透過觀察逆斷層錯動時,剪裂帶與隧道之間的互制行為,並記錄剪裂帶範圍、
隧道傾斜量、隧道位移量與地表影響範圍。本研究旨在提供一種更為簡便但準確的斷
層和隧道相互作用研究方法,並為實際工程中的地質災害評估和基礎設施設計提供有
價值的參考。
本研究基於離心模型試驗和大尺寸 1g 斷層試驗,探討隧道在不同埋置深度下的
位移、傾斜量及地表影響範圍的表現。研究發現,當埋置深度為隧道高度的兩倍時,
大尺寸 1g 斷層試驗中的隧道水平位移和垂直位移結果分別高估約 20%和 24%;而隧
道傾斜量及地表影響範圍則分別低估 27%和 38%。由於大尺寸 1g 斷層試驗的斷層錯
動速率與真實情況較接近,剪裂帶的發展行為更接近實際情況;而離心模型試驗的受
力環境更類似真實場景,因此在評估隧道受斷層影響的行為時,兩種試驗方法各有優
缺點。此外,若減少隧道的埋置深度,將導致位移量和傾斜量增加,並擴大剪裂帶和
地表影響範圍,因此淺埋置隧道的擺放位置需更加保守。
摘要(英) In the fields of geology and geotechnical engineering, the study of faults and tunnels is
important. Particularly in seismically active regions, the presence of fault zones and fractured
geological formations introduces significant uncertainties in tunnel design and construction,
potentially posing serious threats to tunnel stability and safety. The inherent difficulty in
directly observing in situ soil layers and faults, compounded by the limited availability of data,
complicates the analytical process. To simulate various failure mechanisms, civil engineers
often simplify these complex problems and construct numerical or physical models. However,
the preparation of full-scale physical models is time-consuming and economically inefficient,
while numerical simulations require extensive preliminary work based on field investigations
or simplified physical model experiments. Additionally, the experimental process for centrifuge
models is also time-intensive, and the availability of research facilities equipped with
centrifuges is relatively limited.
To address these challenges, this study utilizes 1g fault experiments to simulate the
interaction between faults and tunnels, aiming to understand the impact of faults on tunnel
stability. The results are compared with centrifuge modeling tests to explore the correlation
between the two, thereby assessing the reliability of 1g fault experiments. The research focuses
on observing the interaction between shear zones and tunnels during reverse fault movements,
documenting the extent of the shear zones, tunnel inclination, tunnel displacement, and surface
impact area. This study seeks to provide a more straightforward yet accurate method for
investigating the interaction between faults and tunnels, offering valuable insights for
geological hazard assessment and infrastructure design in practical engineering.
This research, based on centrifuge modeling tests and large-scale 1g fault experiments,
explores the behavior of tunnels at different burial depths in terms of displacement, inclination,
and surface impact area. The study finds that when the burial depth is twice the tunnel height,
the horizontal and vertical displacement results from large-scale 1g fault experiments
overestimate by approximately 20% and 24%, respectively, while the tunnel inclination and
surface impact area are underestimated by 27% and 38%, respectively. Due to the closer
approximation of fault slip rates to real-world conditions in large-scale 1g fault experiments,
the behavior of shear zone development is more representative of actual scenarios. In contrast,
the stress environment in centrifuge model tests is more analogous to real-world conditions,
making the tunnel′s stress behavior, displacement, and inclination more similar to those in
actual situations. Therefore, both testing methods have their respective strengths and
iii
weaknesses when evaluating the behavior of tunnels affected by faults. Furthermore, reducing
the burial depth of tunnels leads to increased displacement and inclination, as well as an
expanded shear zone and surface impact area, necessitating a more conservative approach to
the placement of shallow-buried tunnels.
關鍵字(中) ★ 淺層明挖覆蓋矩形隧道
★ 斷層錯動
★ 1g 物理模型試驗
關鍵字(英) ★ Shallow Excavation Covering Rectangular Tunnel
★ Fault Dislocation
★ 1g Physical Model Testing
論文目次 目錄
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1研究動機與目的 1
1-2研究方法 1
1-3論文內容 2
第二章 文獻回顧 4
2-1斷層分類 4
2-2活動斷層定義 5
2-3相關法規 7
2-3-1 地盤分類 7
2-3-2 矩形隧道考量土壤結構互制效應之耐震設計基本原則 8
2-3-3 結構主體之斷面力計算(橫斷面) 10
2-4台灣實際案例-中寮隧道 13
2-5物理模型試驗 14
2-5-1 1g物理模型試驗 14
2-5-2 離心模型試驗 16
第三章 試驗設備及試驗步驟 19
3-1試驗儀器與設備 19
3-1-1 1g斷層模擬試驗箱 19
3-1-2 壓克力矩形隧道模型 21
3-1-3 雷射測距儀 23
3-2試驗材料 23
3-2-1 礫石 23
3-2-2 石英細砂 (離心模型試驗之試驗材料) 25
3-2-3 色砂(珍珠石) 27
3-3試驗準備及試驗步驟 28
3-3-1 試驗前準備 28
3-3-2 試體準備 29
3-3-3 試驗過程 31
3-3-4  PIVlab 31
第四章 試驗內容及結果與討論 33
4-1試驗相關名詞與定義 33
4-1-1 試驗代號 33
4-1-2 試驗相關名詞 34
4-2試驗內容 37
4-2-1 大尺寸1g斷層試驗配置 38
4-2-2 離心模型試驗配置 41
4-3試驗結果 43
4-3-1 大尺寸1g斷層試驗結果 43
4-3-2 大尺寸1g斷層試驗各組間比較 62
4-3-3 1g試驗結果與離心機試驗結果比較 76
第五章 結論與建議 94
5-1結論 94
5-2建議 96
參考文獻 97
附錄一 101
參考文獻 [1] 交通技術標準規範鐵路類工務部,鐵路明挖覆蓋隧道設計規範,交通技術標準規範
鐵路類工務部(2016)。
[2] 李崇正,「模型試驗在大地工程教學的應用」,土木水利,第 30 卷,第 4 期,第 89-
92 頁(2003)。
[3] 張徽正、林啟文、陳勉銘、盧詩丁,「臺灣活動斷層分布圖說明書」,經濟部中央地
質調查所特刊,第 10 號(1998)。
[4] 邱亦維、藺于鈞、黃文正、顏一勤、波玫琳、李元希,「臺灣臺灣西南部中寮隧道北
端口旗山斷層帶構造特性研究」,經濟部中央地質調查所特刊,第 34 號,第 83-100
頁(2019)。
[5] 林啟文、劉彥求、周稟珊、林燕慧,「臺灣活動斷層調查的近期發展」,經濟部中央
地質調查所彙刊,第 34 號,第 1-40 頁(2021)。
[6] 林銘郎、李崇正、黃文正、黃文昭,「活動斷層近地表變形特性研究」,經濟部中央
地質調查所報告,第 9 號,臺北,臺灣(2011)。
[7] 林士誠,「標準貫入試驗 N 值應用之彙整(二)」,技師報,第 655 號(2009)。
[8] 洪汶宜、李崇正、張有毅、黃文昭、黃文正、林銘郎、林燕慧,「以離心模型試驗探
討正逆斷層引致的地表變形與剪裂帶發展」,經濟部中央地質調查所特刊,第 28 號,
第 129-151 頁(2014)。
[9] 盧詩丁、陳柏村、許晉瑋,「臺灣活動斷層研究及未來發展」,大地技師,第 15 期,
第 14-25 頁(2017)。
[10] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,
98
博士論文,國立中央大學土木工程學系,桃園,臺灣(2013)。
[11] 陳柏翰,「礫石受剪之音波與振波特性」,碩士論文,國立中央大學土木工程學系,
桃園,臺灣(2013)。
[12] 廖奕昜,「以離心模型試驗模擬逆斷層錯動近地表變形特性」,碩士論文,國立中央
大學土木工程學系,桃園,臺灣(2013)。
[13] 張庭傑,「以離心模型模擬正斷層及逆斷層通過複合土層引致的地表變形特性」,碩
士論文,國立中央大學土木工程學系,桃園,臺灣(2014)。
[14] 鍾春富,「逆斷層錯動引致上覆土層變形行為及對結構物影響之研究」,博士論文,
國立臺灣大學土木工程學系,臺北,臺灣(2007)。
[15] 洪千惠,「礫石層組構特性對逆斷層引致復合地層變形之影響」,國立臺灣大學土木
工程學系,臺北,臺灣(2020)。
[16] 鍾承哲,「斷層錯動引致地表構造物與管線位移之模擬」,碩士論文,國立中央大學
土木工程學系,桃園,臺灣(2021)。
[17] 彭昱熙,「斜移斷層錯動引致上覆土層內結構物變形之研究」,碩士論文,國立臺灣
大學土木工程學系,臺北,臺灣(2022)。
[18] Ahmadi, M., Moosavi, M., Jafari, M. K., “Experimental investigation of reverse fault
rupture propagation through wet granular soil,” Engineering Geology, Vol. 239, pp. 229-
240, 2018
[19] Bray, J. D., Seed, R. B., Cluff, L. S., and Seed, H. B., “Earthquake fault rupture
propagation through soil,” Journal of Geotechnical Engineering, Vol. 120, No. 3, pp.543–
561, 1994
[20] Bray, J. D., Seed, R. B., and Seed, H. B., “Analysis of earthquake fault rupture propagation
99
through cohesive soil, ” Journal of Geotechnical Engineering, Vol. 120, No 3., pp. 562-
580, 1994
[21] Baziar, M. H., Nabizadeh, A., Lee, C. J., Hung, W. Y., “Centrifuge modeling of interaction
between reverse faultingand tunnel,” Soil Dynamics and Earthquake Engineering, pp.
151-164, 2014
[22] Cole, D. A., Jr., and Lade, P. V., “Influence zones in alluvium over dip-slip faults, ” Journal
of Geotechnical Engineering, Vol. 110, pp. 599-615, 1984
[23] Chen, W. S., Lee, K. J., Lee, L. S., Streig, A. R., Rubin, C. M., Chen, Y. G., Yang, H. C.,
Chang, H. C., and Lin, C. W., “Paleoseismic evidence for coseismic growth-fold in the
1999 Chichi earthquake and earlier earthquakes, central Taiwan,” Journal of Asian Earth
Sciences, Vol 31, pp. 204-213, 2007
[24] Coletta, M., De Gregorio, F., Visingardi, A., Iuso, G., “PIV data: Vortex Detection and
Characterization,” 13th International Symposium on Particle Image Velocimetry, 2019
[25] Fossen, H., Cavalcante, G. C. G., “Shear zones – A review,” Earth-Science Reviews, Vol.
171, pp. 434-455, 2017
[26] Kelson, K. I., Kang, K. H., Page W.D., Lee, C. T., and Cluff, L. S., “Representative Styles
of Deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) Earthquake:
Geomorphic Characteristics and Responses of Man-Made Structures,” Bulletin of the
Seismological Society of America, Vol. 91, No. 5, pp. 930-952 (2001).
[27] Kelson, K. I., Harder, L. F., Kishida, T., Ryder, I., “Preliminary Observations of Surface
Fault Rupture from the April 11, 2011 Mw6.6 Hamadoori Earthquake, Japan,”
Geotechnical Extreme Events Reconnaissance, No. GEER-025D (2011).
[28] Lee, J. W., Hamada, M., Tabuchi, G., Suzuki, K., “Prediction of fault rupture propagation
based on physical model test in sandy soil deposit,” 13th World Conference on Earthquake
Engineering, B.C., Canada, Paper No. 119, 2004
100
[29] Li, C. Y., Wei, Z. Y., Ye, J. Q., Han, Y. B., and Zheng, W. J., “Amounts and styles of
coseismic deformation along the northern segment of surface rupture, of the 2008
Wenchuan Mw 7.9 earthquake, China,” Tectonophysics, Vol. 491, pp. 35-58 (2010).
[30] Lin, M. L., Chung C. F., and Jeng F. S., “Deformation of overburden soil induced by thrust
fault slip,” Engineering Geology, Vol. 88, pp. 70-89(2006)
[31] Roth, W. H., Scott, R. F. and Austin, I., “Centrifuge modeling of fault propagation through
alluvial soils,” Geophysical Research Letters, Vol. 8, No. 6, pp. 561-564, 1981
[32] Soegianto, D. P., “Centrifuge Modelling on Dip-Slip Fault Rupture Propagation in
Multiple Soil Strata,” Master Thesis, Department of Civil Engineering, National Central
University, Taoyuan, Taiwan (2020).
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明