博碩士論文 111322043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.133.155.253
姓名 古明正(Ming-Zheng Gu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 具裂縫的緩衝材料自癒行為模擬
(Simulation of Self-Healing Behavior in Cracked Buffer Material)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具不同上部結構之樁基礎受振行為★ 基盤土壤液化對上方土堤位移的影響
★ 回填與緩衝材料之動態強度★ 砂質土壤中柔性擋土牆在動態載重下的行為
★ Effect of Vertical Drain Methods on The Soil Liquefaction★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake
★ 微生物膠結作用對砂質土壤性質的影響★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策
★ 土壤液化引致側向滑移對樁基礎之影響及其對策★ 挖掘機鏟斗上土壤黏附問題的基礎研究
★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應
★ 應用時域反射法於地層下陷監測之改善研發★ Seismic response of sheet pile walls with and without anchors by centrifuge modeling tests
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究規劃動態離心模型試驗模擬緩衝材料受震引致破裂行為,以及1 g物理模型試驗模擬有裂縫之緩衝材料受地下水浸潤時自癒行為。在動態離心模型試驗中,透過地工離心機提供10 g的穩定離心加速度場,以模擬現地處置孔中緩衝材料的土壓力條件。在離心模型試驗過程中輸入不同振幅及頻率的基盤震動,紀錄廢棄物罐頂部與底部的加速度反應,並在試驗結束後觀察並記錄緩衝材料塊受震後破裂的裂縫分佈情形。在小模型試驗中將人工製造裂縫,模擬處置孔內受到深層地下水浸潤,觀察帶有裂縫的緩衝材料之自癒行為。
離心模型試驗結果顯示無地下水入侵之試驗在振動事件頻率為3 Hz時廢棄物罐有較大的反應,且裂縫分佈多為垂直向裂縫;有地下水入侵之試驗在各振動事件中廢棄物罐皆和系統受震反應一致,裂縫部分則同時有垂直向及水平向。在1g裂縫癒合試驗中,共有20組試驗其中5組為裂縫寬度0.45 mm,裂縫深度分佈為4 mm至 12 mm,模擬處置坑內之水流路徑,在試驗完成後發現其只有表面癒合,內部還存在一裂縫無法閉合;15組為裂縫寬度0.45 mm、0.80 mm及1.45 mm,裂縫深度分佈為4 mm至12 mm,因在現地處置時間約為十萬年,故試驗結果顯示裂縫癒合時間與裂縫深度以較大時間尺度下相差無幾,但裂縫癒合時間與裂縫寬度呈現正相關,其癒合時間隨裂縫寬度之上升趨勢為指數型增加,並且在裂縫寬度較大、裂縫深度較小時較容易發生裂縫癒合不完全之情形。
摘要(英) This study plans dynamic centrifuge model tests to simulate the crack behavior of buffer materials induced by input motion and 1g-scale physical model tests to simulate the self-healing behavior of cracked buffer materials under groundwater infiltration. In the dynamic centrifuge model tests, centrifuge provides a stable centrifugal acceleration of 10 g to replicate the stress conditions of buffer materials in the disposal hole. Different amplitudes and frequencies of input motions are applied during the centrifuge model tests, monitoring the acceleration responses at the top and bottom of the canister and observing and recording the crack distribution of the buffer material blocks post-seismic excitation. In the 1g physical model tests, artificial cracks are created to simulate deep groundwater infiltration into the disposal hole, observing the self-healing behavior of buffer material with cracks.
In the centrifuge model tests, results indicate that under a input motion frequency of 3 Hz, the canister exhibits greater responses in the absence of groundwater infiltration, with predominantly vertical crack distributions. In tests with groundwater infiltration, the canister′s responses align with the system′s seismic response, with both vertical and horizontal crack distributions. In the 1g crack healing tests, a total of 20 tests are conducted. Five groups have a crack width of 0.45 mm and crack depths ranging from 4 mm to 12 mm, simulating the water flow path within the disposal pit. Post-test observations reveal only surface healing, with internal cracks remaining unclosed. The remaining 15 groups have crack widths of 0.45 mm, 0.80 mm, and 1.45 mm and crack depths ranging from 4 mm to 12 mm. Results suggest that while crack healing time shows minimal variation with crack depth on a large time scale, there is a positive correlation between crack healing time and crack width, with healing time exponentially increasing with crack width. Moreover, incomplete crack healing is more likely to occur with larger crack widths and smaller crack depths.
關鍵字(中) ★ 廢棄物罐
★ 緩衝材料
★ 自癒行為
關鍵字(英) ★ Canister
★ Buffer
★ Self-Healing Behavior
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
附圖目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 論文架構 2
第二章 文獻回顧 3
2.1 台灣與國際之深層地質處置概念 3
2.2 KBS-3最終處置概念 5
2.3 多重障壁系統 7
2.4 廢棄物罐 8
2.5 緩衝材料 9
2.6 膨潤土回脹機制 11
2.7 模擬現地緩衝材料之膨脹行為 12
2.8 廢棄物罐振動反應 14
2.9 離心模型試驗原理 15
2.9.1 離心模型縮尺律 16
2.10 小結 17
第三章 試驗設備、材料及試驗程序 18
3.1 試驗設備及材料 18
3.1.1 中大地工離心機 18
3.1.2 圓筒試驗箱 19
3.1.3 加速度計 21
3.1.4 廢棄物罐 21
3.1.5 載重塊 22
3.1.6 膨潤土SPV200 23
3.1.7 1g裂縫觀察箱 23
3.1.8 鋸子 28
3.1.9 壓製模具 28
3.3 試驗程序 30
3.3.1 離心模型試體準備程序 30
3.3.2 離心模型試驗程序 31
3.3.3 壓製膨潤土塊程序 32
第四章 試驗結果與討論 34
4.1 試驗方法 34
4.2 試驗配置 35
4.2.1 離心模型試驗 35
4.2.2 小模型試驗 36
4.3 離心模型試驗結果 38
4.3.1 無地下水入侵之離心模型試驗 38
4.3.2 地下水入侵之離心模型試驗 54
4.3.3 離心模型試驗結果比較 70
4.3.4 以離心模型試驗結果觀察長期自癒行為 71
4.3.5 小結 72
4.4 小模型試驗結果 73
4.4.1 改變水流路徑裂縫寬度為0.45 mm之試驗比較 73
4.4.2 裂縫寬度為0.45 mm之試驗比較 78
4.4.3 裂縫寬度為0.8 mm之試驗比較 82
4.4.4 裂縫寬度為1.45 mm之試驗比較 86
4.4.5 裂縫深度為4 mm、6 mm、8 mm、10 mm及12 mm之試驗比較 90
第五章 結論與未來建議 92
5.1 結論 92
5.2 未來建議 93
參考文獻 94
參考文獻 [1]. Åkesson, M., Kristensson, O., Börgesson, L., Dueck, A., and Hernelind, J., “THM modelling of buffer, backfilland other system components,” SKB TR-10-11, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010).
[2]. Eriksson, P., Svensk Kärnbränslehantering AB., “Basic engineering of buffer production system,” SKB P-14-11, Swedish Nuclear Fuel and Waste Management Company, Sweden (2014).
[3]. Hung, W.H., Chen, W.C., “Swelling behavior of a potential buffer material under simulated near field environment,” Journal of nuclear science and technology, Vol 41, No.12, pp. 1271-1279 (2004).
[4]. Johannesson, L.E., Börgesson, L., “Compaction of bentonite blocks – Development of techniques for production of blocks with different shapes and sizes,” SKB R-99-12, Swedish Nuclear Fuel and Waste Management Company, Sweden (1998).
[5]. Johannesson, L. E., “Compaction of full size blocks of bentonite for the KBS-3 concept – Initial tests for evaluating the technique,” SKB R-99-66, Swedish Nuclear Fuel and Waste Management Company, Sweden (1999).
[6]. Karnland, O., Ollson, S., and Nilsson, U., “Mineralogy and sealing properties of various bentonite sand smectite-rich clay material,” SKB TR-06-30, Swedish Nuclear Fuel and Waste Management Company, Sweden (2006).
[7]. Martin, J., Hossein, H., Thushan, E., “Analysis of the effect of vibrations on the bentonite buffer in the canister hole,” SKB R-09-40, Swedish Nuclear Fuel and Waste Management Company, Sweden (2009).
[8]. Madsen, F.T., Müller-Vonmoos, M., “The swelling behavior of clays,” Applied Clay science, Vol 4, pp.143-156 (1989).
[9]. Neall, F., Pastina, B., Smith, P., Gribi, P., Snellman, M., Johnson L., “Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto,” POSIVA 2007-10, Posiva Oy, Olkiuoto, Finland (2007).
[10]. Pusch, R., “Waste disposal in rock,” Developments in Geotechnical Engineering 76, ELSEVIER, Amsterdam (1994).
[11]. Raiko, H., Sandström, R., Rydén, H.. ”Design analysis report for the canister,” TR-10-28, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010).
[12]. Svensk Kärnbränslehantering AB., “Buffer and backfill process report for the safety assessment SR-Can.” TR-06-18, Swedish Nuclear Fuel and Waste Management Company, Sweden (2006)
[13]. Svensk Kärnbränslehantering AB., “KBS-3H Complementary studies 2008–2010,” TR-10-12, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010).
[14]. Svnsk Kärnbränslehantering AB., “Spent nuclear fuel for disposal in the KBS-3 repository,” TR-10-13, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010b).
[15]. Svensk Kärnbränslehantering AB., “Design, production and initial state of the buffer,” TR-10-15, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010d).
[16]. Svensk Kärnbränslehantering AB., “Long-term safety for the final repository for spent nuclear fuel at Forsmark,” TR-11-01, Swedish Nuclear Fuel and Waste Management Company, Sweden (2011).
[17]. Svensk Kärnbränslehantering AB., “Design, production and initial state of the canister,” TR-10-14, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010).
[18]. Svensk Kärnbränslehantering AB., “Full scale tests of the early THM behaviour of the KBS-3 buffer,” TR-23-22, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010c).
[19]. Svensk Kärnbränslehantering AB., “Buffer swelling Laboratory tests and modelling,” TR-20-04, Swedish Nuclear Fuel and Waste Management Company, Sweden (2020).
[20]. Svensk Kärnbränslehantering AB., “Modelling of the mechanical interaction between the buffer and the backfill in KBS-3V,” TR-16-08, Swedish Nuclear Fuel and Waste Management Company, Sweden (2016).
[21]. 台灣電力公司,「低放射性廢棄物最終處置技術評估報告(定稿版)」(2017)。
[22]. 台電公司,「用過核子燃料最終處置計畫書」,台灣電力公司核能後端營運處,台灣 (2014)。
[23]. 行政院原子能委員會核能研究所,「用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段:支援技術報告(二)-處置設計與工程技術」,行政院原子能委員會核能研究所,龍潭 (2017)。
[24]. 李崇正,「離心機模型原理」,實驗土壤力學講義,桃園,臺灣 (1997)。
[25]. 陳文泉,「高放射性廢棄物深層地質處理緩衝材料回脹行為研究」,博士論文,國立中央大學土木工程學系,桃園,臺灣 (2000)。
[26]. 陳盈倫,「緩衝材料在不同圍壓下之工程性質」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2018)。
[27]. 許家駿,「以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2017)。
[28]. 蔡孟勳,「不同含水量皂土之壓實性質」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2006)。
[29]. 魏雨辰,「土壤液化引致的隧道上浮行為:以離心模型試驗進行模擬與簡易隧道上浮位移評估方法」,博士論文,國立中央大學土木工程學系,桃園,臺灣 (2013)。
[30]. 譚志豪,「黏土壓縮與壓密行為之研究」,博士論文,國立中央大學土木工程學系,桃園,臺灣(2002)。
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2024-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明