博碩士論文 111426043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.224.55.136
姓名 洪庭幃(Ting-Wei Hong)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 基於輕量級語義分割網路結合自動生成像素級標籤技術的晶圓圖混合型缺陷模式識別
(Wafer Map Mixed-Type Defect Pattern Recognition based on Lightweight Semantic Segmentation Network with Automatic Pixel-Level Label Generation Technique)
相關論文
★ 應用失效模式效應分析於產品研發時程之改善★ 服務品質因子與客戶滿意度關係研究-以汽車保修廠服務為例
★ 家庭購車決策與行銷策略之研究★ 計程車車隊派遣作業之研究
★ 電業服務品質與服務失誤之探討-以台電桃園區營業處為例★ 應用資料探勘探討筆記型電腦異常零件-以A公司為例
★ 車用配件開發及車主購買意願探討(以C公司汽車配件業務為實例)★ 應用田口式實驗法於先進高強度鋼板阻抗熔接條件最佳化研究
★ 以層級分析法探討評選第三方物流服務要素之研究-以日系在台廠商為例★ 變動良率下的最佳化批量研究
★ 供應商庫存管理架構下運用層級分析法探討供應商評選之研究-以某電子代工廠為例★ 台灣地區快速流通消費產品銷售預測模型分析研究–以聯華食品可樂果為例
★ 競爭優勢與顧客滿意度分析以中華汽車為例★ 綠色採購導入對電子代工廠的影響-以A公司為例
★ 以德菲法及層級分析法探討軌道運輸業之供應商評選研究–以T公司為例★ 應用模擬系統改善存貨管理制度與服務水準之研究-以電線電纜製造業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 晶圓製程包含數百個複雜步驟,完成後需進行晶片測試。識別晶圓圖中的缺陷模式有助於找出缺陷原因並優化製程,例如CMP可能導致中心、刮痕、邊緣等缺陷。迅速準確地辨識缺陷模式對提高產量至關重要。而近期在晶圓圖缺陷模式識別領域應用深度學習的研究大大加速了缺陷檢測的過程。然而當不同的缺陷混合在同一塊晶圓上時,混合型晶圓缺陷相較單類別晶圓缺陷複雜,對於晶圓缺陷模式的識別非常困難,而使用語意分割可以有效的辨識混合晶圓缺陷,但語意分割的訓練資料要求像素級晶圓圖標籤。故在本文中,我們提出了一個自動晶圓圖標籤生成技術,並通過使用語義分割方法在晶圓圖上分割不同的缺陷模式。
摘要(英) The wafer fabrication process involves hundreds of complex steps, followed by chip testing upon completion. Identifying defect patterns in wafer maps helps identify the causes of defects and optimize the process. For example, Chemical Mechanical Polishing (CMP) may lead to defects such as center defects, scratches, and edge defects due to particle aggregation or pad hardening during the CMP process. Rapid and accurate identification of defect patterns is crucial for improving yield. Recent research applying deep learning to defect pattern recognition in wafer maps has significantly accelerated the defect detection process. However, when different defects are mixed on the same wafer, mixed-type wafer defects are more complex compared to single-type defects, making defect pattern recognition challenging. Semantic segmentation can effectively identify mixed wafer defects, but training data for semantic segmentation requires pixel-level wafer map labels. Therefore, in this study, we propose an automatic wafer map labeling technique and segment different defect patterns on wafer maps using semantic segmentation.
關鍵字(中) ★ 晶圓缺陷辨識
★ 語意分割
★ 資料生成
關鍵字(英) ★ wafer defect recognition
★ semantic segmentation
★ data generation
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 iv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 問題定義 3
1.3研究目的 3
1.4研究方法 3
第二章 文獻回顧 4
2.1單一類別缺陷模型辨識 4
2.2 混合類別缺陷模型辨識 5
2.3 語意分割 7
第三章 方法論 10
3.1 自動生成像素級標籤技術 11
3.1.1 生成單類別晶圓缺陷圖 11
3.2 輕量級語意分割網路 18
3.2.1編碼器 18
3.2.2 Efficient Transformer 20
3.2.2 解碼器 21
第四章 實驗結果 23
4.1數據及資料前處理 23
4.2實驗設置 24
4.3分類結果 25
第五章 結論 28
參考文獻 30
參考文獻 [1] Batool, U., M. I. Shapiai, H. Fauzi, & J. X. Fong. "Convolutional neural network for imbalanced data classification of silicon wafer defects." 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA). IEEE, 2020, 230-235.
[2] Bochkovskiy, A., C. Y. Wang, & H. Y. M. Liao. "Yolov4: Optimal speed and accuracy of object detection." arXiv preprint arXiv:2004.10934, 2020.
[3] Byun, Y., & J. G. Baek. "Mixed Pattern Recognition Methodology on Wafer Maps with Pre-trained Convolutional Neural Networks." ICAART (2), 2020, 974-979.
[4] Carion, N., F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, & S. Zagoruyko. "End-to-end object detection with transformers." European Conference on Computer Vision. Cham: Springer International Publishing, 2020, 213-229.
[5] Chiu, M. C., & T. M. Chen. "Applying data augmentation and mask R-CNN-based instance segmentation method for mixed-type wafer maps defect patterns classification." IEEE Transactions on Semiconductor Manufacturing 34.4, 2021, 455-463.
[6] He, K., X. Zhang, S. Ren, & J. Sun. "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770-778.
[7] He, K., G. Gkioxari, P. Dollár, R. Girshick. "Mask r-cnn." Proceedings of the IEEE International Conference on Computer Vision, 2017, 2961-2969.
[8] Huang, G., Z. Liu, L. Van Der Maaten, & K. Q. Weinberger. "Densely connected convolutional networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 4700-4708.
[9] Jin, C. H., H. J. Na, M. Piao, G. Pok, & K. H. Ryu. "A novel DBSCAN-based defect pattern detection and classification framework for wafer bin map." IEEE Transactions on Semiconductor Manufacturing 32.3, 2019, 286-292.
[10] Kahng, H., & S. B. Kim. "Self-supervised representation learning for wafer bin map defect pattern classification." IEEE Transactions on Semiconductor Manufacturing 34.1, 2020, 74-86.
[11] Kyeong, K., & H. Kim. "Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks." IEEE Transactions on Semiconductor Manufacturing 31.3 ,2018, 395-402.
[12] Kong, Y., & D. Ni. "Recognition and location of mixed-type patterns in wafer bin maps." 2019 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE). IEEE, 2019, 4-8.
[13] Kong, Y., & D. Ni. "Qualitative and quantitative analysis of multi-pattern wafer bin maps." IEEE Transactions on Semiconductor Manufacturing 33.4 ,2020, 578-586.
[14] Nakazawa, T., & D. V. Kulkarni. "Wafer map defect pattern classification and image retrieval using convolutional neural network." IEEE Transactions on Semiconductor Manufacturing 31.2, 2018, 309-314.
[15] Nag, S., D. Makwana, S. Mittal, C. K. Mohan. "WaferSegClassNet-A light-weight network for classification and segmentation of semiconductor wafer defects." Computers in Industry 142, 2022, 103720.
[16] Piao, M., C. H. Jin, J. Y. Lee, & J. Y. Byun. "Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features." IEEE Transactions on Semiconductor Manufacturing 31.2, 2018, 250-257.
[17] Redmon, J., & A. Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767, 2018.
[18] Shinde, P. P., P. P. Pai, & S. P. Adiga. "Wafer defect localization and classification using deep learning techniques." IEEE Access 10, 2022, 39969-39974.
[19] Song, D., B. Liu, & Y. Li. "Based on end-to-end object detection algorithm with transformers for detecting wafer maps." 2022 International Conference on Computer Network, Electronic and Automation (ICCNEA). IEEE, 2022, 297-302.
[20] Wang, J., C. Xu, Z. Yang, J. Zhang, X. Li. "Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition." IEEE Transactions on Semiconductor Manufacturing 33.4, 2020, 587-596.
[21] Wang, R., & N. Chen. "Wafer map defect pattern recognition using rotation-invariant features." IEEE Transactions on Semiconductor Manufacturing 32.4, 2019, 596-604.
[22] Wei, Y., & H. Wang. "Mixed-type wafer defect recognition with multi-scale information fusion transformer." IEEE Transactions on Semiconductor Manufacturing 35.2, 2022, 341-352.
[23] Xu, G., J. Li, G. Gao, H. Lu, J. Yang, & D. Yue. "Lightweight real-time semantic segmentation network with efficient transformer and CNN." IEEE Transactions on Intelligent Transportation Systems 24.12, 2023, 15897-15906.
[24] Yan, J., Y. Sheng, & M. Piao. "Semantic Segmentation-Based Wafer Map Mixed-Type Defect Pattern Recognition." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42.11 , 2023, 4065-4074.
指導教授 葉英傑(Ying-Chieh Yeh) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明