博碩士論文 111426004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.224.32.243
姓名 駱佩詩(Pei-Shih Lo)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 應用深度學習優化塗佈機之預測性維護
(Applying Deep Learning to Optimize Predictive Maintenance for Coating Machines)
相關論文
★ 以模擬退火演算法 進行化鍍製程無關聯平行機台之排程★ 以混合整數規劃 安插電鍍銅平行機台之緊急訂單
★ 以混合整數規劃進行非相關平行機台之批次製造排程★ 考量最大利潤之再生能源發電業最佳能源分配
★ 工業用電考量時間電價之太陽能發電系統最佳配置規劃★ 應用資料探勘提升伺服器CPU熱流驗證效能
★ 半導體設備商因應歐盟碳邊境調整機制之供應商遴選模式★ 以螞蟻演算法最佳化具備時間窗考量之貨櫃電池運輸路徑
★ 以混合整數規劃優化移動式充電樁存放位置★ 快遞轉運中心以風光互補發電提升電動車隊用電之綠能佔比
★ 製藥業連續製程可行性之外部環境評估★ 以基因演算法優化無人機送餐路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著工業4.0的蓬勃發展,製造業正積極導入人工智慧(Artificial Intelligence, AI)、物聯網(IoT)、大數據(Big Data)、雲端運算(Cloud Computing)、機器人技術以及自動化等現代技術使工廠轉型為智慧製造。利用這些高科技技術建立智慧工廠,將產品組件和設備上安裝感測器以利收集即時數據與分析,預測設備故障的可能性和時間點,實現預測性維護同時實現更多製造和供應鏈運營的智慧決策。在傳統的預防性維護模式中,工廠通常會根據固定的時間間隔或使用時間來進行設備檢修,但這種方法存在許多缺點,如維護成本高、資源浪費、無法即時調整等。若採用預測性維護則可以避免過度維護所增加的停機時間,且能提前檢測到異常進行維護,提高設備的運行穩定性。智慧製造的關鍵在於穩定且高效的生產效率,有著優質品質和可靠的設備將成為製造業在全球市場中取得成功的重要因素。

  本研究以某塗佈製程公司的感測器所收集之數據為研究對象,以預診斷與健康管理 (Prognostics and Health Management, PHM)為架構,進行設備預測模型。透過利用長短期記憶(Long Short-Term Memory, LSTM)自編碼器(AutoEncoder)建立異常檢測分類模型,結果顯示模型的評價指標如準確率達99.96%、召回率達100% 以及 F2-Score 為96.7%,整體成效皆有良好表現,且透過計算健康指標制定機台健康管理規範,提高機台健康透明度。再使用一維卷積神經網路(1D Convolutional Neural Network, 1D CNN) 結合LSTM建立預測主速度模型,透過分析歷史數據找出判斷異常的跡象,並使用不同超參數與滑動窗口來進行效能比較,評估出最佳模型且驗證其效能。本研究以15秒的時間序列資料預測未來第20秒的主速度值,最終實驗結果顯示設備可於14秒前偵測到異常速度下降,模型效能在R2達到96%、MSE為2.2。基於上述結果,可作為設備健康狀況的評估,提前規劃維修保養、保障機台的持續穩定運轉、提高生產效率以及優化整體生產運營,達到預測性維護之目的。
摘要(英) With the vigorous development of Industry 4.0, the manufacturing industry is actively adopting modern technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), Big Data, Cloud Computing, robotics, and automation to transform factories into smart manufacturing facilities. By integrating automation equipment and combining it with AI, smart factories are established to collect real-time data through sensors installed on product components and equipment, predict the likelihood and timing of equipment failures, achieve predictive maintenance. In traditional preventive maintenance models, factories typically perform equipment maintenance based on fixed time intervals or usage time, which has many disadvantages such as high maintenance costs, resource waste, and the inability to adjust in real time. Adopting predictive maintenance can avoid excessive downtime and detect anomalies for maintenance in advance, thereby improving the stability of equipment operation. The key to smart manufacturing is to achieve high-quality products, and reliable equipment, which will be important factors for success in the global market for the manufacturing industry.

  This study focuses on the data collected from the sensors of a coating process company, aiming at prognostics and health management (PHM) for equipment anomaly detection. A predictive anomaly detection classification model is established using Long Short-Term Memory (LSTM) AutoEncoder. The results show that the model achieves important evaluation indicators such as accuracy rate of 99.96%, recall rate of 100%, and F2-Score of 96.7%, demonstrating excellent overall performance. Additionally, the Health Index calculation serves as a machine health management mechanism. Furthermore, a predictive model is established using 1D Convolutional Neural Network (1D CNN) combined with LSTM. By analyzing historical data to identify signs of anomalies and using different hyperparameters and sliding windows for performance comparison, the optimal model is evaluated. This study uses 15 seconds of time series data to predict the main speed value at the 20th second in the future. The final results show that the equipment can detect an abnormal speed drop 14 seconds in advance, with the model′s performance achieving R2of 96% and MSE of 2.2. Based on these results, it can be used to assess equipment health, schedule maintenance in advance, boost production efficiency, and optimize overall operations, achieving predictive maintenance goals.
關鍵字(中) ★ 深度學習
★ 預診斷與健康管理
★ 長短期記憶
★ 自編碼器
★ ㄧ維卷積神經網路
關鍵字(英) ★ Prognostics and Health Management
★ Deep Learning
★ Long Short-Term Memory Networks
★ AtuoEncoder
★ Convolutional Neural Network
論文目次 摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 研究問題 1
1.1 智慧製造&人工智慧 1
1.2 研究動機 3
1.3 問題描述 6
第二章 文獻探討 8
2.1 維護策略 8
2.2 預診斷與健康管理(Prognostics and Health Management, PHM) 12
2.3 機器學習(Machine Learning, ML) 15
2.4 深度學習(Deep Learning, DL) 17
第三章 研究方法 22
3.1 問題分析 22
3.2 長短期記憶(Long Short-Term Memory, LSTM) 25
3.2.1 激勵函數(Activation Function) 28
3.2.2 優化器(Optimizer) 30
3.3 自編碼器(AutoEncoder, AE) 31
3.4 ㄧ維卷積神經網路(1D Convolutional Neural Network, 1D CNN) 32
3.3.1 卷積層(Convolution layer) 33
3.3.2 池化層(Pooling layer) 33
3.3.3 全連接層(Fully Connected layer) 33
3.5 1D CNN-LSTM 34
3.6 損失函數(Loss Function) 34
3.7 評價指標(Evaluation Metrics) 35
第四章 電腦實驗 38
4.1 實驗環境與開發工具 38
4.2 數據集說明 39
4.3 實驗設計 41
4.3.1 特徵標準化(Feature Scaling) 41
4.3.2 滑動窗口(Sliding Window) 41
4.3.3 建立模型 43
4.4 實驗結果分析 45
4.4.1 異常檢測(Anomaly Detection) 45
4.4.2 1D CNN-LSTM預測模型 49
4.4.3 健康指數(Health Index) 51
4.5 研究結論 52
第五章 結論 54
5.1 研究總結 54
5.2 未來方向 55
參考文獻 56
參考文獻 中文文獻
1. 工業技術研究院 https://coating.itri.org.tw/technology/hardware/3-hardware.html(查閱日期:2023年12月25日)。
2. 朱文彬,2019。「先進塗佈製程與設計開創高價值產品」。工業材料雜誌, 386期,059。
3. 谷歌機器學習教育課程 https://developers.google.com/machine-learning/gan/gan_structure?hl=zh-tw(查閱日期:2024年03月05日)。
4. 洪哲倫、張志宏、林宛儒,2019。「工業4.0與智慧製造的關鍵技術:工業物聯網與人工智慧」。科儀新知,221,pp.19-25。
5. 財團法人資訊工業策進會https://www.iii.org.tw/Focus/FocusDtl.aspx?f_type=2&f_sqno=PE5ep%2BXYvQHJatEOb13lBg__&fm_sqno=13(查閱日期:2023年12月15日)。
6. 溫恕恒,2011。「到處可見的塗佈工程」。工業材料雜誌,299期,055。
7. 顧問公司OOSGA https://zh.oosga.com/docs/industry-40/(查閱日期:2023年11月11日)。
英文文獻
8. Alsyouf, I., 2009, “Maintenance practices in Swedish industries: Survey result.” International Journal of Production Economics, Vol. 121, pp. 221-223.
9. Araszkiewicz, K., 2017, “Digital Technologies in Facility Management-The state of Practice and Research Challenges.” Procedia Engineering, Vol. 196, pp. 1034-1042.
10. Bhat, D., Muench, S., & Roellig, M., 2023, “Application of machine learning algorithms in prognostics and health monitoring of electronic systems: A review e-Prime - Advances in Electrical Engineering.” Electronics and Energy, Vol. 4, Article 100166.
11. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., & Zdeborová, L., 2019, “Machine learning and the physical sciences.” Reviews of Modern Physics, Vol. 91 (4), Article 045002.
12. Chung, E., Park, K., & Kang, P., 2023, “Fault classification and timing prediction
based on shipment inspection data and maintenance reports for semiconductor manufacturing equipment.” Computers & Industrial Engineering, Vol. 176, Article 108972.
13. Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B., 2020, “Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0.” Sustainability, Vol. 12 (19), Article 8211.
14. Deng, C., Yin, X., Zou, J., Wang, M., & Hou, Y., 2024, “Assessment of the impact of climate change on streamflow of Ganjiang River catchment via LSTM-based models.” Journal of Hydrology: Regional Studies, Vol. 52, Article 101716.
15. Goodfellow, I., Bengio, Y., & Courville, A., 2016, “Deep learning.” MIT Press.
16. Hardt, F., Kotyrba, M., Volna, E., & Jarusek, R., 2021, “Innovative Approach to Preventive Maintenance of Production Equipment Based on a Modified TPM Methodology for Industry 4.0.” Applied Sciences, Vol. 11 (15), Article 6953.
17. Heinrich, K., Zschech, P., Janiesch, C., & Bonin, M., 2021, “Process data properties matter: Introducing gated convolutional neural networks (GCNN) and key-value-predict attention networks (KVP) for next event prediction with deep learning.” Decision Support Systems, Vol. 143, Article 113494.
18. Hochreiter, S., & Schmidhuber, J., 1997, “Long Short-Term Memory.” Neural Computation, Vol. 9 (8), pp. 1735-1780.
19. Hurtado, J., Salvati, D., Semola, R., Bosio, M., & Lomonaco, V., 2023, “Continual learning for predictive maintenance: Overview and challenges.” Intelligent Systems with Applications, Vol. 19, Article 200251.
20. Janiesch, C., Zschech, P., & Heinrich, K., 2021, “Machine learning and deep learning.” Electronic Markets, Vol. 31 (3), pp. 685-695.
21. Jezzini, A., Ayache, M., Elkhansa, L., Makki, B., & Zein, M., 2013, “Effects of predictive maintenance (PdM), Proactive maintenance (PoM) & Preventive maintenance (PM) on minimizing the faults in medical instruments.” 2013 2nd International Conference on Advances in Biomedical Engineering, pp. 53-56.
22. Jiang, C., Chen, Y., Chen, S., Yuming, B., Li, W., Tian, W., & Guo, J., 2019, “A Mixed Deep Recurrent Neural Network for MEMS Gyroscope Noise Suppressing.” Electronics, Vol. 8 (2), Article 181.
23. Kadry, S., 2012, “Diagnostics and prognostics of engineering systems: methods and techniques: methods and techniques.” IGI Global.
24. Krohling, B., & Krohling, R., 2023, “1D Convolutional neural networks and machine learning algorithms for spectral data classification with a case study for Covid-19.” ArXiv, abs/2301.10746.
25. Kumar, P., Khalid, S., & Kim, H. S., 2023, “Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications - A Review.” Mathematics, Vol. 11 (13), Article 3008.
26. Lee, D., Choo, H., & Jeong, J., 2023, “Anomaly Detection based on 1D-CNN-LSTM Auto-Encoder for Bearing Data.” WSEAS Transactions on Information Science and Applications, Vol. 20, pp. 1-6.
27. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D., 2018, “Machine Learning in Agriculture: A Review.” Sensors, Vol. 18 (8), Article 2674.
28. Malhotra, P., Vishnu, T. R., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. M., 2016, “Multi-Sensor Prognostics using an Unsupervised Health Index based on LSTM Encoder-Decoder.” arXiv preprint arXiv:1608.06154.
29. McKinsey Digital., 2015, “Industry 4.0: How to navigate digitization of the manufacturing sector.”
30. Mobley, R. K., 2002, “An introduction to predictive maintenance.” Elsevier.
31. Navamani, T. M., 2019, “Efficient Deep Learning Approaches for Health Informatics.” In Deep learning and parallel computing environment for bioengineering systems, pp. 123-137, Academic Press.
32. Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M., 2021, “Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management.” International Journal of Information Management, Vol. 57, Article 102282.
33. Praveena, M., & Jaiganesh, V., 2017, “A Literature Review on Supervised Machine Learning Algorithms and Boosting Process.” International Journal of Computer Applications, Vol. 169 (8), pp. 32-35.
34. Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R., 2019, “A survey of predictive maintenance: Systems, purposes and approaches.” arXiv preprint arXiv:1912.07383.
35. Raouf, I., Khan, A., Khalid, S., Sohail, M., Azad, M. M., & Kim, H. S., 2022, “Sensor-Based Prognostic Health Management of Advanced Driver Assistance System for Autonomous Vehicles: A Recent Survey.” Mathematics, Vol. 10 (18), Article 3233.
36. Rasamoelina, A. D., Adjailia, F., & Sinčák, P., 2020, “A Review of Activation Function for Artificial Neural Network.” 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 281-286. IEEE.
37. Russell, S., & Norvig, P., 2016, “Artificial Intelligence: A modern approach (3rd Edition).” Pearson.
38. Samuel, A. L., 1959, “Some Studies in Machine Learning Using the Game of Checkers.” IBM Journal of Research and Development, Vol. 3 (3), pp. 210-229.
39. Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P., 2017, “Stock price prediction using LSTM, RNN and CNN-sliding window model.” 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1643-1647. IEEE.
40. Sharma, S., Sharma, S., & Athaiya, A., 2017, “Activation functions in neural networks.” Towards Data Sci, Vol. 6 (12), pp. 310-316.
41. Shinde, P. P., & Shah, S., 2018, “A Review of Machine Learning and Deep Learning Applications.” 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1-6. IEEE.
42. Son, L. H., Tripathy, H. K., Acharya, B. R., Kumar, R., & Chatterjee, J. M., 2018, “Machine Learning on Big Data: A Developmental Approach on Societal Applications.” Big Data Processing Using Spark in Cloud, pp. 143-165.
43. Swanson, L., 2001, “Linking maintenance strategies to performance.” International Journal of Production Economics, Vol. 70 (3), pp. 237-244.
44. Vogl, G. W., Weiss, B. A., & Helu, M., 2019, “A review of diagnostic and prognostic capabilities and best practices for manufacturing.” Journal of intelligent manufacturing, Vol. 30, pp. 79-95.
45. Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V., 2017, “A manufacturing big data solution for active preventive maintenance.” IEEE Transactions on Industrial Informatics, Vol. 13 (4), pp. 2039-2047.
46. Wang, W., He, Q., Cui, Y., & Li, Z., 2018, “Joint Prediction of Remaining Useful Life and Failure Type of Train Wheelsets: Multitask Learning Approach.” Journal of Transportation Engineering Part A: Systems, Vol. 144.
47. Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L., 2021, “Industry 4.0 and Industry 5.0 - Inception, Conception and Perception.” Journal of Manufacturing Systems, Vol. 61, pp. 530-535.
48. Yoshimatsu, O., Satou, Y., & Shibasaki, K., 2018, “Rolling bearing diagnosis based on CNN-LSTM and various condition dataset.” In Annual conference of the PHM society, Vol. 10 (1).
49. Yue, G., Ping, G., & Lanxin, L., 2018, “An End-to-End model based on CNN-LSTM for Industrial Fault Diagnosis and Prognosis.” 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), pp. 22-24. IEEE.
50. Zhang, L., Wang, S., & Liu, B., 2018, “Deep learning for sentiment analysis: A survey.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 8 (4), e1253.
51. Zhang, W., Peng, G., Li, C., Chen, Y., & Zhang, Z., 2017, “A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals.” Sensors, Vol. 17 (2), Article 425.
52. Zhao, R., Wang, J., Yan, R., & Mao, K., 2016, “Machine health monitoring with LSTM networks.” 2016 10th International Conference on Sensing Technology (ICST), pp. 1-6. IEEE.
指導教授 王啓泰(Chi-Tai Wang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明