博碩士論文 111426002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:18.119.134.252
姓名 張右昇(YU-SHENG CHANG)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Locusbots系統於分區揀貨倉庫 的揀貨人員Block選取問題研究
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來資訊科技迅速發展,再加上行動網絡的普及化,造成電子商務的盛行,因此市場需求逐漸轉變為「少量、多樣化」,市場需求的改變同時也提升了物流中心的作業難度,其中對於揀貨作業更甚明顯。根據De Koster et al.(2007)的研究指出,目前大多數的物流中心仍屬於勞力密集的產業,揀貨作業不僅相當耗費成本,更是一種屬於勞力密集的活動,在物流中心裡與揀貨作業相關的人力佔了50%以上。因此為了因應「少量、多樣化」需求的時代來臨,適時地導入自動化設備,並規劃一個合適的揀貨策略,將對物流中心的成本、產能以及效率有著決定性的影響。
基於前述原因,本研究旨在深入探討類Locusbots系統在分區揀貨倉庫中的揀貨策略,與以往Locusbots系統研究不同的是此研究的環境為類Locusbots分區揀貨倉庫。我們打破了傳統揀貨人員只能在自己的Block進行揀貨作業的限制,揀貨人員可以在屬於自己Zone內的Block互相幫忙,吾人將針對「揀貨人員的Block選取問題」進行探討。本研究對「揀貨人員的Block選取問題」提出了第一類及第二類法則,其中第一類法則為本研究所設計之揀貨人員的Block選取法則;而第二類法則則是對第一類法則的延伸,其目的為事先在其所屬Zone內挑選出較繁忙的Block進行揀貨作業,評估方式為計算揀貨Block之(Robot數量/揀貨人員數量)的比例(又稱R/P ratio),若比例大於1,則代表其為繁忙Block,挑選出繁忙Block後再使用本研究所設計之揀貨人員的第一類Block選取法則針對其進行揀貨。若無R/P ratio > 1的Block,則直接使用揀貨人員的第一類Block選取法則選擇Block進行揀貨。
最後,我們利用Arena模擬軟體進行實驗,分析「揀貨人員的Block選取問題」之第一類與第二類法則比較,並針對本研究所提出的數種法則在不同績效指標下的表現。期望藉此找出最適合的揀貨策略組合,同時為未來類似研究提供有價值的參考與貢獻。
摘要(英) In recent years, the rapid development of information technology, coupled with the widespread adoption of mobile networks, has led to the prevalence of e-commerce. Consequently, market demands have shifted towards "small quantity and diversity," increasing the complexity of operations in logistics centers, particularly in picking activities. According to the study by De Koster et al. (2007), most logistics centers remain labor-intensive industries. Picking operations are not only costly but also labor-intensive, with related personnel accounting for over 50% of the workforce in these centers. Therefore, to adapt to the era of "small quantity and diversity" demands, timely introduction of automated equipment and planning an appropriate picking strategy is crucial in significantly impacting the cost, capacity, and efficiency of logistics centers.

Based on the aforementioned reasons, this study aims to delve into the picking strategies in zone-picking warehouses similar to those using LocusBots systems, setting it apart from previous studies on LocusBots systems. We have broken the traditional constraint that pickers can only operate within their designated blocks. In our system, pickers are allowed to assist each other within blocks that belong to their own zone. This study explores the "Block Selection Problem for Pickers," proposing two types of rules. The first type, designed in this study, governs the picker′s block selection, while the second type extends the first, aiming to preemptively select busier blocks within their zone for picking. The evaluation method involves calculating the ratio of the number of robots to the number of pickers (R/P ratio) in a picking block. If the ratio exceeds 1, it indicates that the block is busy. Once busy blocks are identified, the first type of block selection rule designed in this research is applied. If there are no blocks with an R/P ratio greater than 1, pickers directly use the first type of block selection rule.

Finally, we utilize the Arena simulation software to experimentally analyze and compare the first and second types of block selection rules and evaluate the performance of the proposed rules under different performance indicators. Through this, we aim to identify the most suitable combination of picking strategies, providing valuable insights and contributions for future similar research.
關鍵字(中) ★ 物流中心
★ Locusbots系統
★ 揀貨人員
★ 揀貨策略
關鍵字(英) ★ Logistics Center
★ LocusBots System
★ Pickers
★ Picking Strategy
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1 研究背景 1
1.2 研究環境 2
1.3 研究動機 4
1.4 研究目的 5
1.5 論文架構 6
第二章 文獻探討 9
2.1 Locusbots 系統(Locusbots System) 10
2.1.1 Locusbots系統環境與作業流程 11
2.1.2 Locusbots系統的設備介紹 12
2.2倉儲規劃(Warehouse Planning) 16
2.2.1倉儲設計(Warehouse Design) 16
2.2.2走道設計(Aisle Design) 18
2.3揀貨作業規劃(Picking operation planning) 20
2.3.1揀貨方法(Picking Method) 20
2.3.2揀貨政策(Picking policy) 21
2.3.3揀貨路徑策略(Picking Routing Strategy) 24
2.3.4揀貨作業績效評估指標(Picking Operation Performance Evaluation Indicator) 28
第三章 研究方法 29
3.1 Locusbots系統之作業流程的符號及變數定義 30
3.2 Locusbots系統之作業流程與問題分析 31
3.2.1 Locusbots系統之揀貨人員的作業流程 31
3.2.2 Locusbots Robot系統之揀貨機器人的作業流程 34
3.3 各問題之方法整理 37
3.4 訂單選取問題 40
3.4.1 隨機選取法 40
3.5. 揀貨人員的Block選取問題(第一類型) 40
3.5.1第一類隨機選擇法 40
3.5.2第一類最大揀貨品項數法 40
3.5.3第一類最小揀貨品項數法 41
3.5.4第一類最大(揀貨品項數/揀貨人員數量)比例法 42
3.5.5第一類最小(揀貨品項數/揀貨人員數量)比例法 44
3.5.6第一類最短旅行距離 45
3.6. 揀貨人員的Block選取問題(第二類型) 46
3.6.1第二類隨機選擇法 47
3.6.2第二類最大揀貨品項數法 47
3.6.3第二類最小揀貨品項數法 48
3.6.4第二類最大(揀貨品項數/揀貨人員數)法 50
3.6.5第二類最小(揀貨品項數/揀貨人員數)法 51
3.6.6第二類最短旅行距離法 52
3.7. 揀貨人員Robot的選取問題(揀貨人員優先處理哪一台Robot) 54
3.7.1隨機選擇法 54
3.7.最短旅行距離法 54
3.8 Robot的Zone選取法則(決定Robot該前往哪一個Zone) 56
3.8.1隨機選擇法 56
3.9 Robot的Block選取法則(決定Robot該前往哪一個Block) 56
3.9.1隨機選擇法 56
第四章 模擬實驗與分析 57
4.1 模擬實驗設計 57
4.1.1 揀貨環境設定 57
4.1.2 實驗訂單設定 58
4.1.3 揀貨環境假設 59
4.1.4 績效評估指標 60
4.2 統計分析 60
4.2.1 分析說明 62
4.2.2 依「揀貨系統總執行時間(TST)」為績效評估指標 62
4.2.2.1 個別因子之說明(依TST績效值) 63
4.2.2.2最佳因子組合與績效 69
4.2.3 依「訂單在系統內總時間(TTIS)」為績效評估指標 71
4.2.3.1個別因子之說明(依TTIS績效值) 72
4.3 實驗結論 80
第五章 研究結論與建議 82
5.1 研究結論 82
5.2 未來研究建議 84
參考文獻 85
中文文獻 85
英文文獻 86
參考文獻 1. 江偉銘,2011,「具途程彈性之分區揀貨系統的揀貨作業探討」,國立中央大學工業管理研究所,碩士論文。
2. 李天傑,2009,「零散揀貨環境下之分區揀貨作業問題的探討」,國立中央大學工業管理研究所,碩士論文。
3. 周士俊,2000,「塔布搜尋法在物流中心人工揀貨區揀貨問題之研究」,元智大學工業工程研究所,碩士論文。
4. 林育立,2011,「順序式分區揀貨之合作揀貨方法探討」,國立中央大學工業管理研究所,碩士論文。
5. 張福榮,2005,「物流管理」,五南,台北,二版。
6. 郭俊威,2012,「聚不同功能I/O點之分區揀貨倉庫的揀貨路徑發展與比較」,國立中央大學工業管理研究所碩士,碩士論文。
7. 陳暉江,2004,「具兩條以上橫向走道之物流中心揀貨路徑規劃研究」,國立中央大學工業管理研究所,碩士論文。
8. 黃靖華,2017,「類Kiva系統之「Kiva分配於Pod」與「Pod停放位置分配」問題之探討」,國立中央大學工業管理研究所,碩士論文。
9. 楊壁寧,2015,「越庫作業之多排理貨區播種式揀貨相關問題探討」,國立中央大學工業管理研究所,碩士論文。
10. 經濟部商業司,1996,「物流經營管理實務」,經濟部商業司,台北。
11. 董福慶、陳明德,1995,「物流中心揀貨作業」,經濟部發行;機械工業雜誌總經銷,台北,出版。
1. Boysen, N., de Koster, R., & Füßler, D. (2021). The forgotten sons: Warehousing systems for brick-and-mortar retail chains. European Journal of Operational Research, 288(2), 361-381.
2. De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European journal of operational research, 182(2), 481-501.
3. Elbert, R. M., Franzke, T., Glock, C. H., & Grosse, E. H. (2017). The effects of human behavior on the efficiency of routing policies in order picking: The case of route deviations. Computers & Industrial Engineering, 111, 537-551.
4. Frazelle, E. H. (2016). World-class warehousing and material handling. McGraw-Hill Education.
5. Geng, Y., Li, Y., & Lim, A. (2005, November). A very large-scale neighborhood search approach to capacitated warehouse routing problem. In 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI′05) (pp. 8-pp). IEEE.
6. Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), 1-21.
7. Gong, Y., & De Koster, R. (2008). A polling-based dynamic order picking system for online retailers. IIE transactions, 40(11), 1070-1082.
8. Gue, K. R., & Meller, R. D. (2009). Aisle configurations for unit-load warehouses. IIE transactions, 41(3), 171-182
9. Goeke, D., & Schneider, M. (2021). Modeling Single-Picker Routing Problems in Classical and Modern Warehouses: INFORMS Journal on Computing Meritorious Paper Awardee. INFORMS Journal on Computing, 33(2), 436-451.
10. Hackman, S. T., Frazelle, E. H., Griffin, P. M., Griffin, S. O., & Vlasta, D. A. (2001). Benchmarking warehousing and distribution operations: an input-output approach. Journal of Productivity Analysis, 16(1), 79-100.
11. Ho, Y. C., & Chien, S. P. (2006). A comparison of two zone-visitation sequencing strategies in a distribution centre. Computers & Industrial Engineering, 50(4), 426-439.
12. Hsieh, L. F., & Tsai, L. (2006). The optimum design of a warehouse system on order picking efficiency. The International Journal of Advanced Manufacturing Technology, 28(5), 626-637.
13. Ho, Y. C., & Lin, J. W. (2017). Improving order-picking performance by converting a sequential zone-picking line into a zone-picking network. Computers & Industrial Engineering, 113, 241-255.
14. Hong, S., & Kim, Y. (2017). A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system. European Journal of Operational Research, 257(1), 185-196.
15. Koo, P. H. (2009). The use of bucket brigades in zone order picking systems. OR spectrum, 31(4), 759-774.
16. Kocaman, Y., Öztürkoğlu, Ö., & Gümüşoğlu, Ş. (2021). Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points. Central European Journal of Operations Research, 29(1), 323-355.
17. Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q. (2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), 107-122.
18. Lee, H. Y., & Murray, C. C. (2019). Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research, 57(18), 5821-5841.
19. Locus Robotics (2020). Flexible Configuration, Retrieved March 19, 2024 from https://locusrobotics.com/features/bot-configurations/.
20. Locus Robotics (2020). How it works, Retrieved March 19, 2024 from https://www.youtube.com/watch?v=MDKPRkcknRA.
21. Löffler, M., Boysen, N., & Schneider, M. (2022). Picker routing in ROBOT-assisted order picking systems. INFORMS Journal on Computing, 34(1), 440-462.
22. Mohsen, & Hassan, M. D. (2002). A framework for the design of warehouse layout. Facilities, 20(13/14), 432-440.
23. Masae, M., Glock, C. H., & Vichitkunakorn, P. (2020). Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour. International Journal of Production Research, 58(17), 5337-5358.
24. Öztürkoğlu, Ö., & Hoser, D. (2019). A discrete cross aisle design model for order-picking warehouses. European Journal of Operational Research, 275(2), 411-430.
25. Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production Management.
26. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., & Zijm, W. H. (2000). Warehouse design and control: Framework and literature review. European journal of operational research, 122(3), 515-533.
27. Roodbergen, K. J., & De Koster, R. (2001). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133(1), 32-43.
28. Roodbergen, K. J., Sharp, G. P., & Vis, I. F. (2008). Designing the layout structure of manual order picking areas in warehouses. Iie Transactions, 40(11), 1032-1045.
29. Ran, W., Liu, S., & Zhang, Z. (2020). A polling-based dynamic order-picking system considering priority orders. Complexity, 2020.
30. Şahin, R., Ertoğral, K., & Türkbey, O. (2010). A simulated annealing heuristic for the dynamic layout problem with budget constraint. Computers & Industrial Engineering, 59(2), 308-313.
31. Scholz, A., Henn, S., Stuhlmann, M., & Wäscher, G. (2016). A new mathematical programming formulation for the single-picker routing problem. European Journal of Operational Research, 253(1), 68-84.
32. Shah, B., & Khanzode, V. (2017). A comprehensive review of warehouse operational issues. International Journal of Logistics Systems and Management, 26(3), 346-378.
33. Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.
34. Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. John Wiley & Sons.
35. Yetkin Ekren, B. (2021). A multi-objective optimisation study for the design of an AVS/RS warehouse. International Journal of Production Research, 59(4), 1107-1126.
36. Zare Mehrjerdi, Y., Alipour, M., & Mostafaeipour, A. (2018). Integrated order batching and distribution scheduling in a single-block order picking warehouse considering S-shape routing policy. International Journal of Engineering, 31(10), 1723-1733.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明