博碩士論文 111426032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:18.119.116.125
姓名 曾雋喆(Chun-Che Tseng)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Locusbots系統於分區揀貨倉庫的 揀貨人員Robot選取問題研究
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來資訊科技迅速發展,再加上行動網絡的普及化,造成電子商務的盛行,因此市場需求逐漸轉變為「少量、多樣化」,市場需求的改變同時也提升了物流中心的作業難度,其中對於揀貨作業更甚明顯。根據De Koster et al.(2007)的研究指出,目前大多數的物流中心仍屬於勞力密集的產業,揀貨作業不僅相當耗費成本,更是一種屬於勞力密集的活動,在物流中心裡與揀貨作業相關的人力佔了50%以上。因此為了因應「少量、多樣化」需求的時代來臨,適時地導入自動化設備,並規劃一個合適的揀貨策略,將對物流中心的成本、產能以及效率有著決定性的影響。
由於類Locusbots系統可以增加或減少Robot的數目,因此可以有效地解決訂單淡、旺季的問題。除此之外Locusbots可以利用動態路徑規劃,更新揀貨環境狀態,有效避開路上各種障礙物,並規劃最有利的揀貨路徑。本研究旨在「類Locusbots系統」的分區揀貨環境下,探討類Locusbots系統之揀貨人員的作業流程(Type - Ⅰ)(先使用揀貨人員Block選取問題再使用揀貨人員Robot選取問題選取Robot進行揀貨作業)與系統之揀貨人員的作業流程(Type - Ⅱ)(僅使用揀貨人員Robot選取問題選取Robot進行揀貨作業)之績效比較與揀貨人員的「Robot選取問題」在類Locusbots系統之揀貨人員的作業流程(Type - Ⅰ) 與類Locusbots系統之揀貨人員的作業流程(Type - Ⅱ)中之績效比較,應用模擬軟體實驗之結果,期望找出最佳的揀貨人員策略組合,以降低揀貨時間並提升揀貨效率,並對未來之類似研究有相對貢獻。
摘要(英) In recent years, the rapid development of information technology, coupled with the widespread use of mobile networks, has led to the prevalence of e-commerce. Consequently, market demand has gradually shifted to "small quantity, diverse variety," which has simultaneously increased the operational difficulty of logistics centers, particularly in picking operations. According to the research by De Koster et al. (2007), most logistics centers are still labor-intensive industries. Picking operations are not only costly but also labor-intensive, with more than 50% of the workforce in logistics centers being involved in picking activities. Therefore, to respond to the era of "small quantity, diverse variety" demand, the timely introduction of automated equipment and the planning of an appropriate picking strategy will have a decisive impact on the costs, productivity, and efficiency of logistics centers.
Since systems like Locusbots can increase or decrease the number of robots, they can effectively address the issue of fluctuating order volumes during peak and off-peak seasons. Additionally, Locusbots can utilize dynamic path planning to update the state of the picking environment, effectively avoiding various obstacles on the way and planning the most advantageous picking path. This study aims to explore the operational processes of pickers in a "Locusbots-like system" under a zone picking environment. Specifically, it compares the performance of two picker workflows: Type - I (using the Picker Block Selection Problem first, then the Picker Robot Selection Problem to select robots for picking) and Type - II (using only the Picker Robot Selection Problem to select robots for picking). By applying simulation software experiments, the study aims to identify the optimal picker strategy combination to reduce picking time and improve picking efficiency, contributing to similar future research.
關鍵字(中) ★ 物流中心
★ Locusbots系統
★ Robot
★ 訂單選取法則
★ 揀貨人員的「Robot選取問題」
關鍵字(英) ★ logistics center
★ Locusbots system
★ robot
★ order selection rules
★ Picker Robot Selection Problem
論文目次 目錄
摘要 I
AbstractII
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1 研究背景 1
1.2 研究環境 3
1.3 研究動機 5
1.4 研究目的 6
1.5 論文架構 7
第二章 文獻探討 9
2.1 Locusbots系統 10
2.1.1 Locusbots系統環境與作業流程 11
2.1.2 Locusbots設備介紹 12
2.3 倉儲規劃 15
2.3.1 倉儲設計 16
2.3.2 走道設計 18
2.4 揀貨作業規劃 20
2.4.1 訂單批次化 20
2.4.2 揀貨方法 23
2.4.3 揀貨政策 25
2.4.4 揀貨路徑策略 27
2.4.5 揀貨作業績效評估指標 31
第三章 研究方法 33
3.1 系統之作業流程符號及變數定義 33
3.2 系統之作業流程與問題分析 34
3.2.1 類Locusbots系統之揀貨人員的作業流程(Type -Ⅰ) 35
3.2.2 類Locusbots系統之揀貨人員的作業流程(Type - Ⅱ) 37
3.2.3 類Locusbots系統之Robot的作業流程 39
3.3各研究問題之方法整理 42
3.4訂單選取問題 46
3.4.1 隨機選取法 46
3.5 揀貨人員的 Block 選取問題(決定揀貨人員該至哪一個 Block進行揀 46
3.5.1 隨機選擇法 46
3.5.2 最短旅行距離法 47
3.6 揀貨人員的 Robot 選取問題(決定揀貨人員該優先處理哪一台 48
3.6.1 隨機選擇法 49
3.6.2 有最少剩餘揀貨Block數的Robot優先法則 49
3.6.3 有最多剩餘揀貨Block數的Robot優先法則 50
3.6.4 有最少剩餘揀貨品項數的Robot優先法則 51
3.6.5 有最多剩餘揀貨品項數的Robot優先法則 52
3.6.6 最短旅行距離的Robot優先法則 53
3.7 Robot的Zone選取法則(決定Robot該至哪一個 Zone進行揀貨作 54
3.7.1 隨機選取法 54
3.8 Robot的Block選取法則(決定Robot該至哪一個 Block進行揀貨作 55
3.8.1 隨機選取法 55
第四章 模擬實驗與分析 56
4.1 模擬實驗設計 56
4.1.1 揀貨環境設定 56
4.1.2 實驗訂單設定 57
4.1.3 揀貨環境假設 58
4.1.4 績效評估指標 59
4.2 統計分析 59
4.2.1 分析說明 63
4.2.2 依「揀貨系統總執行時間(TST)」為績效評估指標 63
4.2.2.1 個別因子之說明(依TST績效值) 64
4.2.2.2 不同因子交互作用之說明(依TST績效值) 66
4.2.2.3 最佳因子組合與績效(依TST績效值) 72
4.2.3 依「訂單在系統內總時間(TTIS)」為績效評估指標 73
4.2.3.1個別因子之說明(依TTIS績效值) 74
4.2.3.2不同因子交互作用之說明(依TTIS績效值) 76
4.2.3.3最佳因子組合與績效(依TTIS績效值) 81
4.3 實驗結論 82
第五章 研究結論與建議 84
5.1 研究結論 84
5.2 未來研究建議 85
參考文獻 86
中文文獻 86
英文文獻 88
參考文獻 參考文獻
中文文獻
1. 王孔政、褚志鵬,2007,「供應鏈管理」,華泰文化,台北,初版。
2. 李天傑,2009,「零散揀貨環境下之分區揀貨作業問題的探討」,國立中央大學工業管理研究所,碩士論文。
3. 林育立,2011,「順序式分區揀貨之合作揀貨方法探討」,國立中央大學工業管理研究所,碩士論文。
4. 張福榮,2005,「物流管理」,五南,台北,二版。
5. 張兆中,2011,「利用途程彈性於順序式分區揀貨之改善」,國立中央大學工業管理研究所,碩士論文。
6. 陳暉江,2004,「具兩條以上橫向走道之物流中心揀貨路徑規劃研究」,國立中央大學工業管理研究所,碩士論文。
7. 陳慧娟,1994,「物流中心生產力評估指標100」,經濟部發行;機械工業雜誌總經銷,台北,初版。
8. 黃靖華,2017,「類Kiva系統之「Kiva分配於Pod」與「Pod停放位置分配」問題之探討」,國立中央大學工業管理研究所,碩士論文。
9. 楊壁寧,2015,「越庫作業之多排理貨區播種式揀貨相關問題探討」,國立中央大學工業管理研究所,碩士論文。
10. 經濟部商業司,1996,「物流經營管理實務」,經濟部商業司,台北。
11. 董福慶、陳明德,1995,「物流中心揀貨作業」,經濟部發行;機械工業雜誌總經銷,台北,出版。
12. 顏憶茹、張淳智,2001,「物流管理:原理、方法與實例」,前程企管,新北市,三版。

英文文獻
1. Accorsi, R., Manzini, R., & Maranesi, F. (2014). A decision-support system for the design and management of warehousing systems. Computers in Industry, 65(1), 175-186.
2. Chen, T. L., Cheng, C. Y., Chen, Y. Y., & Chan, L. K. (2015). An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. International Journal of Production Economics, 159, 158-167.
3. Chen, F., Wang, H., Xie, Y., & Qi, C. (2016). An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse. Journal of Intelligent Manufacturing, 27(2), 389-408.
4. Cano, J. A., Gomez, R. A., & Salazar, F. (2017). Routing policies in multi-parallel warehouses: an analysis of computing times. Espacios, 38(51), 23.
5. Cano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., & Cortés, P. (2019, June). Genetic algorithms for the picker routing problem in multi-block warehouses. In International Conference on Business Information Systems (pp. 313-322). Springer, Cham.
6. De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European journal of operational research, 182(2), 481-501.
7. De Vries, J., De Koster, R., & Stam, D. (2016). Aligning order picking methods, incentive systems, and regulatory focus to increase performance. Production and Operations Management, 25(8), 1363-1376.
8. Elbert, R. M., Franzke, T., Glock, C. H., & Grosse, E. H. (2017). The effects of human behavior on the efficiency of routing policies in order picking: The case of route deviations. Computers & Industrial Engineering, 111, 537-551.
9. Esmero, A. T., Branzuela, Q. R. S., Paypa, J. T., Rojo, S. M. S., Sacay, E. S., Selerio, E.F., & Ocampo, L. A. (2021). Heuristic comparative assessment of non-conventional warehouse designs. Engineering Management in Production and Services, 13(1), 89-103.
10. Frazelle, E. H. (2016). World-class warehousing and material handling. McGraw-Hill Education.
11. Gue, K. R., & Meller, R. D. (2009). Aisle configurations for unit-load warehouses. IIE transactions, 41(3), 171-182
12. Hwang*, H., Oh, Y. H., & Lee, Y. K. (2004). An evaluation of routing policies for order-picking operations in low-level picker-to-part system. International Journal of Production Research, 42(18), 3873-3889.
13. Ho, Y. C., & Liu, C. F. (2005). A design methodology for converting a regular warehouse into a zone-picking warehouse. Journal of the Chinese Institute of Industrial Engineers, 22(4), 332-345.
14. Ho, Y. C., & Chien, S. P. (2006). A comparison of two zone-visitation sequencing strategies in a distribution centre. Computers & Industrial Engineering, 50(4), 426-439.
15. Hwang, H. S., & Cho, G. S. (2006). A performance evaluation model for order picking warehouse design. Computers & Industrial Engineering, 51(2), 335-342.
16. Ho, Y. C., & Lin, J. W. (2017). Improving order-picking performance by converting a sequential zone-picking line into a zone-picking network. Computers & Industrial Engineering, 113, 241-255.
17. Kocaman, Y., Öztürkoğlu, Ö., & Gümüşoğlu, Ş. (2021). Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points. Central European Journal of Operations Research, 29(1), 323-355.
18. Lin, C. H., & Lu, I. Y. (1999). The procedure of determining the order picking strategies in distribution center. International Journal of Production Economics, 60, 301-307.
19. Le-Duc, T., & De Koster, R. M. (2007). Travel time estimation and order batching in a 2-block warehouse. European Journal of Operational Research, 176(1), 374-388.
20. Lau, H. Y., & Woo, S. O. (2008). An agent-based dynamic routing strategy for automated material handling systems. International Journal of Computer Integrated Manufacturing, 21(3), 269-288.
21. Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q. (2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), 107-122.
22. Lee, H. Y., & Murray, C. C. (2019). Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research, 57(18), 5821-5841.
23. Locus Robotics (2020). Flexible Configuration, Retrieved March 19, 2024 from https://locusrobotics.com/features/bot-configurations/.
24. Locus Robotics (2020). How it works, Retrieved March 19, 2024 from https://www.youtube.com/watch?v=MDKPRkcknRA.
25. Löffler, M., Boysen, N., & Schneider, M. (2022). Picker routing in AGV-assisted order picking systems. INFORMS Journal on Computing, 34(1), 440-462.
26. Manzini, R., Gamberi, M., & Regattieri, A. (2005). Design and control of a flexible order‐picking system (FOPS): a new integrated approach to the implementation of an expert system. Journal of Manufacturing Technology Management.
27. Matusiak, M., De Koster, R., & Saarinen, J.(2017). Utilizing individual picker skills to improve order batching in a warehouse. European Journal of Operational Research, 263 (3), 888-899.
28. Öztürkoğlu, Ö., Gue, K. R., & Meller, R. D. (2012). Optimal unit-load warehouse designs for single-command operations. Iie Transactions, 44(6), 459-475.
29. Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production Management.
30. Petersen, C. G. (2002). Considerations in order picking zone configuration. International Journal of Operations & Production Management.
31. Parikh, P. J., & Meller, R. D. (2008). Selecting between batch and zone order picking strategies in a distribution center. Transportation Research Part E: Logistics and Transportation Review, 44(5), 696-719.
32. Pohl, L. M., Meller, R. D., & Gue, K. R. (2011). Turnover-based storage in non-traditional unit-load warehouse designs. IIE Transactions, 43(10), 703-720.
33. Petersen, C. G., & Aase, G. R. (2017). Improving order picking efficiency with the use of cross aisles and storage policies. Open Journal of Business and Management, 5(01), 95.
34. Park, H., Son, D., Koo, B., & Jeong, B. (2021). Waiting strategy for the vehicle routing problem with simultaneous pickup and delivery using genetic algorithm. Expert Systems with Applications, 165, 113959.
35. Pourvaziri, H., Pierreval, H., & Marian, H. (2021). Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution. European Journal of Operational Research, 290(2), 499-513.
36. Quader, S., & Castillo-Villar, K. K. (2018). Design of an enhanced multi-aisle order-picking system considering storage assignments and routing heuristics. Robotics and Computer-Integrated Manufacturing, 50, 13-29.
37. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., & Zijm, W. H. (2000). Warehouse design and control: Framework and literature review. European journal of operational research, 122(3), 515-533.
38. Roodbergen, K. J., & Koster, R. (2001). Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39(9), 1865-1883.
39. Rimiene, K. (2008). THE DESIGN AND OPERATION OF WAREHOUSE. Economics & Management.
40. Scholz, A., Henn, S., Stuhlmann, M., & Wäscher, G. (2016). A new mathematical programming formulation for the single-picker routing problem. European Journal of Operational Research, 253(1), 68-84.
41. Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.
42. Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. John Wiley & Sons.
43. Van den Berg, J. P., & Zijm, W. H. (1999). Models for warehouse management: Classification and examples. International journal of production economics, 59(1-3), 519-528.
44. Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., & Caris, A. (2018). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197, 243-261.
45. Yener, F., & Yazgan, H. R. (2019). Optimal warehouse design: Literature review and case study application. Computers & Industrial Engineering, 129, 1-13.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明