參考文獻 |
1. Mendell, J.R., et al., Current clinical applications of in vivo gene therapy with AAVs. Molecular Therapy, 2021. 29(2): p. 464-488.
2. Alhashimi, M., et al., Nonhuman adenoviral vector-based platforms and their utility in designing next generation of vaccines for infectious diseases. Viruses, 2021. 13(8): 1493.
3. Marshall, E., Gene therapy a suspect in leukemia-like disease. American Association for the Advancement of Science, 2002. 298(5591): p. 34-35
4. Buckley, R.H., Gene therapy for SCID—a complication after remarkable progress. The Lancet, 2002. 360(9341): p. 1185-1186.
5. Derossi, D., et al., The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 1994. 269(14): p. 10444-10450.
6. Kaygisiz, K., et al., Data-mining unveils structure–property–activity correlation of viral infectivity enhancing self-assembling peptides. Nature Communications, 2023. 14(1): 5121.
7. Whelehan, C.J., et al., Characterisation and expression profile of the bovine cathelicidin gene repertoire in mammary tissue. BMC Genomics, 2014. 15: p. 1-13.
8. 沈筱容, 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體, 國立中央大學化學工程與材料工程學系碩士論文, 2019.
9. 謝勗元, 利用磷脂質促進硬脂基化胜肽之基因輸送, 國立中央大學化學工程與材料工程學系碩士論文, 2021.
10. 白旭閎, 影響硬脂基化Indolicidin結構的因子及其基因傳輸效果的探討, 國立中央大學化學工程與材料工程學系碩士論文, 2022.
11. Kolašinac, R., et al., Deciphering the functional composition of fusogenic liposomes. International Journal of Molecular Sciences, 2018. 19(2): 346.
12. Ma, C.-C., et al., The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnology Advances, 2020. 40: 107502.
13. Scheller, E. and P. Krebsbach, Gene therapy: design and prospects for craniofacial regeneration. Journal of Dental Research, 2009. 88(7): p. 585-596.
14. Yang, Y., et al., Application of peptides in construction of nonviral vectors for gene delivery. Nanomaterials, 2022. 12(22): 4076.
15. Khavinson, V.K., et al., Peptide regulation of gene expression: A systematic review. Molecules, 2021. 26(22): 7053.
16. Chugh, A., F. Eudes, and Y.S. Shim, Cell‐penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life, 2010. 62(3): p. 183-193.
17. Jafari, S., S.M. Dizaj, and K. Adibkia, Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. BioImpacts: BI, 2015. 5(2): 103.
18. Gori, A., et al., Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem, 2023. 18(17): 202300236.
19. Numata, K., et al., Library screening of cell-penetrating peptide for BY-2 cells, leaves of Arabidopsis, tobacco, tomato, poplar, and rice callus. Scientific Reports, 2018. 8(1): 10966.
20. Layek, B., L. Lipp, and J. Singh, Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. International Journal of Molecular Sciences, 2015. 16(12): p. 28912-28930.
21. Jaroniec, C.P., et al., Structure and dynamics of micelle-associated human immunodeficiency virus gp41 fusion domain. Biochemistry, 2005. 44(49): p. 16167-16180.
22. Desale, K., K. Kuche, and S. Jain, Cell-penetrating peptides (CPPs): An overview of applications for improving the potential of nanotherapeutics. Biomaterials Science, 2021. 9(4): p. 1153-1188.
23. Liang, Y., et al., Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics, 2022. 12(11): 4866.
24. Martin, I. and J.-M. Ruysschaert, Common properties of fusion peptides from diverse systems. Bioscience Reports, 2000. 20(6): p. 483-500.
25. Placidi, G., et al., Small molecules targeting endocytic uptake and recycling pathways. Frontiers in Cell and Developmental Biology, 2023. 11: 1125801.
26. Somvanshi, P. and S. Khisty, Peptide-based DNA delivery system. Medicine in Novel Technology and Devices, 2021. 11: 100091.
27. Rahimi, H., et al., Antifungal effects of indolicidin-conjugated gold nanoparticles against fluconazole-resistant strains of Candida albicans isolated from patients with burn infection. International Journal of Nanomedicine, 2019. 14: p. 5323-5338.
28. Galdiero, E., et al., An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. International Journal of Nanomedicine, 2016. 11: p. 4199-4211.
29. Futaki, S., et al., Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjugate Chemistry, 2001. 12(6): p. 1005-1011.
30. Li, Y., et al., Fatty acid modified octa-arginine for delivery of siRNA. International Journal of Pharmaceutics, 2015. 495(1): p. 527-535.
31. Boisguérin, P., et al., Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines, 2021. 9(5): 583.
32. White, B.J., et al., Colorimetric biosensor: Crosslinker variations. US Naval Research Laboratory Memorandum Report, NRL/MR/6930--18-9820, 2018.
33. Watson, H., Biological membranes. Essays in Biochemistry, 2015. 59: p. 43-69.
34. Zhao, Y. and L. Huang, Lipid nanoparticles for gene delivery. Advances in genetics, 2014. 88: p. 13-36.
35. Mardešić, I., et al., Membrane models and experiments suitable for studies of the cholesterol bilayer domains. Membranes, 2023. 13(3): 320.
36. Chesnoy, S. and L. Huang, Structure and function of lipid-DNA complexes for gene delivery. Annual Review of Biophysics and Biomolecular Structure, 2000. 29(1): p. 27-47.
37. Kolašinac, R., Characterization and application of fusogenic liposomes. Universitäts-und Landesbibliothek Bonn, 2020.
38. Bonaccorso, A., et al., The Therapeutic Potential of Novel Carnosine Formulations: Perspectives for Drug Development. Pharmaceuticals, 2023. 16(6): 778.
39. Gbian, D.L. and A. Omri, Lipid-based drug delivery systems for diseases managements. Biomedicines, 2022. 10(9): 2137.
40. Guimaraes, P.P., et al., Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Journal of Controlled Release, 2019. 316: p. 404-417.
41. Hui, S.W., et al., The role of helper lipids in cationic liposome-mediated gene transfer. Biophysical Journal, 1996. 71(2): p. 590-599.
42. Ermilova, I. and J. Swenson, DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA. Physical Chemistry Chemical Physics, 2020. 22(48): p. 28256-28268.
43. LoPresti, S.T., et al., The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. Journal of Controlled Release, 2022. 345: p. 819-831.
44. Wilhelmy, C., et al., Polysarcosine-functionalized mRNA lipid nanoparticles tailored for immunotherapy. Pharmaceutics, 2023. 15(8): 2068.
45. Vysochinskaya, V., et al., Influence of Lipid Composition of Cationic Liposomes 2X3-DOPE on mRNA Delivery into Eukaryotic Cells. Pharmaceutics, 2022. 15(1): 8.
46. Medjmedj, A., et al., In Cellulo and in vivo comparison of cholesterol, Beta-sitosterol and dioleylphosphatidylethanolamine for lipid nanoparticle formulation of mRNA. Nanomaterials, 2022. 12(14): 2446.
47. Mochizuki, S., et al., The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013. 1828(2): p. 412-418.
48. Hattori, Y., et al., Effect of the combination of cationic lipid and phospholipid on gene-knockdown using siRNA lipoplexes in breast tumor cells and mouse lungs. Molecular Medicine Reports, 2023. 28(4): p. 1-12.
49. Hattori, Y., et al., Optimal combination of cationic lipid and phospholipid in cationic liposomes for gene knockdown in breast cancer cells and mouse lung using siRNA lipoplexes. Molecular Medicine Reports, 2022. 26(2): p. 1-12.
50. Kolašinac, R., et al., Influence of environmental conditions on the fusion of cationic liposomes with living mammalian cells. Nanomaterials, 2019. 9(7): 1025.
51. Cunningham, S., et al., Evaluation of a porcine model for pulmonary gene transfer using a novel synthetic vector. The Journal of Gene Medicine: A Cross‐disciplinary Journal for Research on the Science of Gene Transfer and Its Clinical Applications, 2002. 4(4): p. 438-446.
52. Jenkins, R., et al., An integrin-targeted non-viral vector for pulmonary gene therapy. Gene Therapy, 2000. 7(5): p. 393-400.
53. Hart, S.L., et al., Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Human Gene Therapy, 1998. 9(4): p. 575-585.
54. Li, Q., et al., Lipid‐Peptide‐mRNA Nanoparticles Augment Radioiodine Uptake in Anaplastic Thyroid Cancer. Advanced Science, 2023. 10(3): 2204334.
55. Zeng, Y., et al., Efficient mRNA delivery using lipid nanoparticles modified with fusogenic coiled-coil peptides. Nanoscale, 2023. 15(37): p. 15206-15218.
56. Robinson, J.P., et al., Flow cytometry: the next revolution. Cells, 2023. 12(14): 1875.
57. 莊偉綜, et al., 同步輻射小角度X光散射在化學材料之應用. 化學, 2009. 67(3): p. 253-263.
58. Napieraj, M., Effect of stucture on digestion of proteins. Université Paris-Saclay, 2023.
59. Tian, Y., et al., Nanotubes, plates, and needles: pathway-dependent self-assembly of computationally designed peptides. Biomacromolecules, 2018. 19(11): p. 4286-4298.
60. Peetla, C., A. Stine, and V. Labhasetwar, Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Molecular Pharmaceutics, 2009. 6(5): p. 1264-1276.
61. Bazin, D., et al. X-ray studies on biological membranes using synchrotron radiation. Springer Nature in Synchrotron Radiation in Chemistry and Biology I. 1988. p. 173-202
62. Pabst, G., et al., Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography, 2003. 36(6): p. 1378-1388.
63. Pabst, G., et al., Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Physical Review E, 2000. 62(3): 4000.
64. Ko, T.H. and Y.-F. Chen, Correlation between the In-Plane Critical Behavior and Out-of-Plane Interaction of Ternary Lipid Membranes. Membranes, 2022. 13(1): 6.
65. Chung, P.J., et al., Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules. Proceedings of the National Academy of Sciences, 2015. 112(47): p. e6416-e6425.
66. Lombardo, D., et al., Evidence of pre-micellar aggregates in aqueous solution of amphiphilic PDMS–PEO block copolymer. Physical Chemistry Chemical Physics, 2019. 21(22): p. 11983-11991.
67. Qi, M. and Y. Zhou, Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications. Materials Chemistry Frontiers, 2019. 3(10): p. 1994-2009.
68. Moghaddam, B., et al., Exploring the correlation between lipid packaging in lipoplexes and their transfection efficacy. Pharmaceutics, 2011. 3(4): p. 848-864.
69. Rejman, J., et al., Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical Journal, 2004. 377(1): p. 159-169.
70. Kono, Y., et al., Influence of physicochemical properties and PEG modification of magnetic liposomes on their interaction with intestinal epithelial Caco-2 cells. Biological and Pharmaceutical Bulletin, 2017. 40(12): p. 2166-2174.
71. Caracciolo, G., et al., Multicomponent cationic lipid− DNA complex formation: Role of lipid mixing. Langmuir, 2005. 21(25): p. 11582-11587.
72. Akimov, S.A., et al., Continuum models of membrane fusion: Evolution of the theory. International Journal of Molecular Sciences, 2020. 21(11): 3875.
73. Perrin, B.S. and R.W. Pastor, Simulations of membrane-disrupting peptides I: alamethicin pore stability and spontaneous insertion. Biophysical Journal, 2016. 111(6): p. 1248-1257.
74. Du, Z., et al., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Scientific Reports, 2014. 4(1): p. 1-6. |