博碩士論文 111324076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.14.251.43
姓名 廖家瑜(Chia-Yu Liao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 水凝膠奈米膜在拉伸下之動態微觀結構:膜厚度對機械性質的影響
(Microstructural dynamics of stretching nanofilm of hydrogels: effects of film thickness on mechanical properties)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 雖然拉伸水凝膠奈米膜能夠獲取應力-應變曲線,但透過實驗了解內部結構和機制仍然具有挑戰性。因此本研究採用耗散粒子動力學的模擬方法來觀察伸長水凝膠奈米膜的微觀結構變化。觀察薄膜拉伸至斷裂點間的形態變化,並獲得相應的應力-應變曲線。系統性的分析微觀特徵,包括單條高分子的尺寸、鏈的尺寸及鍵長,以了解高分子網絡的變形。此外,也同時觀察高分子、鏈及鍵的斷裂。在薄膜中,界面區域的微觀結構與非界面區域的微觀結構不同,後者在伸長過程中承受較多的力。因此,隨著薄膜厚度的增加,非界面區域的貢獻變得更加明顯,導致機械性能進一步地增強。
摘要(英) While stretching hydrogel nanofilms enables the acquisition of stress-strain curves, deciphering the internal structure and mechanisms through experiments remains challenging. In this work, dissipative particle dynamics simulations are employed to observe microstructural changes in elongated hydrogel nanofilms. The morphological changes of the film, up to the point of fracture, are observed, and the corresponding stress-strain curve is obtained. Microscopic characteristics, including polymer size, strand size, and bond length, are systematically analyzed to understand the network’s deformation. Additionally, the breakages of polymers, strands, and bonds are closely monitored. In a thin film, the microstructure of the interfacial region differs from that of the bulk region, with the latter enduring more forces during extension. Consequently, as film thickness increases, the contribution from the bulk region becomes more pronounced, leading to a further enhancement of mechanical properties.
關鍵字(中) ★ 水凝膠
★ 奈米膜
★ 機械性質
關鍵字(英) ★ hydrogel
★ nanofilm
★ mechanical properties
論文目次 摘要 i
Abstract ii
目錄 iii
List of figures iv
Chapter 1 Introduction 1
Chapter 2 Simulation method 4
2.1 Interaction forces 4
2.2 Simulation system 5
2.3 Stress-strain behavior and radius of gyration 6
Chapter 3 Results and Discussion 9
3.1 Morphological and mechanical changes during elongation 9
3.2 Microstructural changes during elongation 15
3.3 Effects of film thickness and mechanism 22
Chapter 4 Conclusions 27
References 29
參考文獻 [1] E.M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” Journal of Advanced Research, Vol. 6, No. 2, 2015, pp. 105-121.
[2] Y. Gao, K. Peng, S. Mitragotri, “Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact,” Advanced Materials, Vol. 33, No. 25, 2021, p. 2006362.
[3] P. Jiang, P. Lin, C. Yang, H. Qin, X. Wang, F. Zhou, “3D Printing of Dual-Physical Cross-linking Hydrogel with Ultrahigh Strength and Toughness,” Chemistry of Materials, Vol. 32, No. 23, 2020, pp. 9983-9995.
[4] M.K. Yazdi, V. Vatanpour, A. Taghizadeh, M. Taghizadeh, M.R. Ganjali, M.T. Munir, S. Habibzadeh, M.R. Saeb, M. Ghaedi, “Hydrogel membranes: A review,” Materials Science and Engineering: C, Vol. 114, 2020, p. 111023.
[5] Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao, G. Yu, “Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability,” Chemical Reviews, Vol. 120, No. 15, 2020, pp. 7642-7707.
[6] X. Lin, X.W. Zhao, C.Z. Xu, L.L. Wang, Y.Z. Xia, “Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms,” Journal of Polymer Science, Vol. 60, No. 17, 2022, pp. 2525-2542.
[7] M.L. Oyen, “Mechanical characterisation of hydrogel materials,” International Materials Reviews, Vol. 59, No. 1, 2014, pp. 44-59.
[8] Y. Lee, W.J. Song, J.Y. Sun, “Hydrogel soft robotics,” Materials Today Physics, Vol. 15, 2020, p. 100258.
[9] Y. Liang, J. He, B. Guo, “Functional Hydrogels as Wound Dressing to Enhance Wound Healing,” ACS Nano, Vol. 15, No. 8, 2021, pp. 12687-12722.
[10] R. Jahanban-Esfahlan, H. Derakhshankhah, B. Haghshenas, B. Massoumi, M. Abbasian, M. Jaymand, “A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy,” International Journal of Biological Macromolecules, Vol. 156, 2020, pp. 438-445.
[11] Z.P. Chen, W. Wang, L. Guo, Y.Y. Yu, Z. Yuan, “Preparation of enzymatically cross-linked sulfated chitosan hydrogel and its potential application in thick tissue engineering,” Science China-Chemistry, Vol. 56, No. 12, 2013, pp. 1701-1709.
[12] V. Nele, J.P. Wojciechowski, J.P.K. Armstrong, M.M. Stevens, “Tailoring Gelation Mechanisms for Advanced Hydrogel Applications,” Advanced Functional Materials, Vol. 30, No. 42, 2020.
[13] G. Stojkov, Z. Niyazov, F. Picchioni, R.K. Bose, “Relationship between Structure and Rheology of Hydrogels for Various Applications,” Gels, Vol. 7, No. 4, 2021.
[14] X. Xue, Y. Hu, S.C. Wang, X. Chen, Y.Y. Jiang, J.C. Su, “Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering,” Bioactive Materials, Vol. 12, 2022, pp. 327-339.
[15] U. Gürel, S. Keten, A. Giuntoli, “Bidispersity Improves the Toughness and Impact Resistance of Star-Polymer Thin Films,” ACS Macro Letters, Vol. 13, No. 3, 2024, pp. 302-307.
[16] A. Mateescu, Y. Wang, J. Dostalek, U. Jonas, “Thin Hydrogel Films for Optical Biosensor Applications,” Membranes, Vol. 2, No. 1, 2012, pp. 40-69.
[17] X. Zhang, Y. Guan, Y. Zhang, “Ultrathin Hydrogel Films for Rapid Optical Biosensing,” Biomacromolecules, Vol. 13, No. 1, 2012, pp. 92-97.
[18] Z. Zhao, J. Gu, Y. Zhao, Y. Guan, X.X. Zhu, Y. Zhang, “Hydrogel Thin Film with Swelling-Induced Wrinkling Patterns for High-Throughput Generation of Multicellular Spheroids,” Biomacromolecules, Vol. 15, No. 9, 2014, pp. 3306-3312.
[19] A. Erbas, M. Olvera de la Cruz, “Energy Conversion in Polyelectrolyte Hydrogels,” ACS Macro Letters, Vol. 4, No. 8, 2015, pp. 857-861.
[20] S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang, C. Guo, K. Fukuda, S. Ma, G. Wang, T. Someya, H.-M. Cheng, X. Xu, “Ultrathin Hydrogel Films toward Breathable Skin-Integrated Electronics,” Advanced Materials, Vol. 35, No. 1, 2023, p. 2206793.
[21] I. Tokarev, S. Minko, “Stimuli-responsive hydrogel thin films,” Soft Matter, Vol. 5, No. 3, 2009, pp. 511-524.
[22] M. Dong, D. Jiao, Q. Zheng, Z.L. Wu, “Recent progress in fabrications and applications of functional hydrogel films,” Journal of Polymer Science, Vol. 61, No. 11, 2023, pp. 1026-1039.
[23] J.A. Lichter, M.T. Thompson, M. Delgadillo, T. Nishikawa, M.F. Rubner, K.J. Van Vliet, “Substrata Mechanical Stiffness Can Regulate Adhesion of Viable Bacteria,” Biomacromolecules, Vol. 9, No. 6, 2008, pp. 1571-1578.
[24] K.W. Kolewe, S.R. Peyton, J.D. Schiffman, “Fewer Bacteria Adhere to Softer Hydrogels,” ACS Applied Materials & Interfaces, Vol. 7, No. 35, 2015, pp. 19562-19569.
[25] H.H. Le, V.T. Tran, M.T.I. Mredha, J.Y. Na, J.K. Seon, I. Jeon, “Thin-film hydrogels with superior stiffness, strength, and stretchability,” Extreme Mechanics Letters, Vol. 37, 2020.
[26] S.Y. Zheng, Y. Tian, X.N. Zhang, M. Du, Y.H. Song, Z.L. Wu, Q. Zheng, “Spin-coating-assisted fabrication of ultrathin physical hydrogel films with high toughness and fast response,” Soft Matter, Vol. 14, No. 28, 2018, pp. 5888-5897.
[27] C.R. Horst, B. Brodland, L.W. Jones, G.W. Brodland, “Measuring the Modulus of Silicone Hydrogel Contact Lenses,” Optometry and Vision Science, Vol. 89, No. 10, 2012, pp. 1468-1476.
[28] P. Boardman, “Modelling the Mechanical Properties of Hydrogel,” Vol.
[29] N.K. Dehkordi, S. Shojaei, A. Asefnejad, K. Hassani, S.Z. Benisi, “Investigation of mechanical properties and the effect of volume fraction of polyacrylamide hydrogel with molecular dynamics simulation,” Results in Physics, Vol. 57, 2024, p. 107440.
[30] A. Koochaki, M. Shahgholi, S.M. Sajadi, E. Babadi, M. Inc, “Investigation of the mechanical stability of polyethylene glycol hydrogel reinforced with cellulose nanofibrils for wound healing: Molecular dynamics simulation,” Engineering Analysis with Boundary Elements, Vol. 151, 2023, pp. 1-7.
[31] S. Mathesan, A. Rath, P. Ghosh, “Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite,” Materials Science and Engineering: C, Vol. 59, 2016, pp. 157-167.
[32] S. Shahshahani, M. Shahgholi, A. Karimipour, “The thermal performance and mechanical stability of methacrylic acid porous hydrogels in an aqueous medium at different initial temperatures and hydrogel volume fraction using the molecular dynamics simulation,” Journal of Molecular Liquids, Vol. 382, 2023, p. 122001.
[33] P. Español, P. Warren, “Statistical Mechanics of Dissipative Particle Dynamics,” Europhysics Letters, Vol. 30, No. 4, 1995, p. 191.
[34] P.J. Hoogerbrugge, J.M.V.A. Koelman, “Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics,” Europhysics Letters, Vol. 19, No. 3, 1992, p. 155.
[35] P. Español, P.B. Warren, “Perspective: Dissipative particle dynamics,” The Journal of Chemical Physics, Vol. 146, No. 15, 2017.
[36] R.D. Groot, P.B. Warren, “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation,” The Journal of Chemical Physics, Vol. 107, No. 11, 1997, pp. 4423-4435.
[37] M.B. Liu, G.R. Liu, L.W. Zhou, J.Z. Chang, “Dissipative Particle Dynamics (DPD): An Overview and Recent Developments,” Archives of Computational Methods in Engineering, Vol. 22, No. 4, 2015, pp. 529-556.
[38] T. Jiang, L. Wang, J. Lin, “Mechanical Properties of Designed Multicompartment Gels Formed by ABC Graft Copolymers,” Langmuir, Vol. 29, No. 39, 2013, pp. 12298-12306.
[39] J.M. Dealy, J. Wang, Melt rheology and its applications in the plastics industry, Springer Science & Business Media2013.
[40] A. Adnan, C.T. Sun, H. Mahfuz, “A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites,” Composites Science and Technology, Vol. 67, No. 3, 2007, pp. 348-356.
[41] A. Karatrantos, R.J. Composto, K.I. Winey, N. Clarke, “Structure and Conformations of Polymer/SWCNT Nanocomposites,” Macromolecules, Vol. 44, No. 24, 2011, pp. 9830-9838.
[42] Y. Wang, H. Liu, P. Li, L. Wang, The Effect of Cross-Linking Type on EPDM Elastomer Dynamics and Mechanical Properties: A Molecular Dynamics Simulation Study, Polymers, 2022.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2024-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明