參考文獻 |
[1] K.A. Omar, R. Sadeghi, “Physicochemical properties of deep eutectic solvents: A review,” J. Mol. Liq., Vol 360, 2022.
[2] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, “Deep Eutectic Solvents: A Review of Fundamentals and Applications,” Chem. Rev., Vol 121, no. 3, 2021, pp. 1232-1285.
[3] T. El Achkar, H. Greige-Gerges, S. Fourmentin, “Basics and properties of deep eutectic solvents: a review,” Environ. Chem, Vol 19, no. 4, 2021, pp. 3397-3408.
[4] E.L. Smith, A.P. Abbott, K.S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Chem. Rev., Vol 114, no. 21, 2014, pp. 11060-11082.
[5] S.-Y. Chang, Y.-J. Sheng, H.-K. Tsao, “Abnormal wetting behavior of supercooled deep eutectic solvents,” J. Mol. Liq., Vol 387, 2023, pp. 122617.
[6] R. Craveiro, I. Aroso, V. Flammia, T. Carvalho, M.T. Viciosa, M. Dionísio, S. Barreiros, R.L. Reis, A.R.C. Duarte, A. Paiva, “Properties and thermal behavior of natural deep eutectic solvents,” J. Mol. Liq., Vol 215, 2016, pp. 534-540.
[7] P. Suthar, M. Kaushal, D. Vaidya, M. Thakur, P. Chauhan, D. Angmo, S. Kashyap, N. Negi, “Deep eutectic solvents (DES): An update on the applications in food sectors,” J. Agric. Food Res., Vol 14, 2023, pp. 100678.
[8] A.S. Dheyab, M.F. Abu Bakar, M. AlOmar, S.F. Sabran, A.F.M. Hanafi, A. Mohamad, “Deep Eutectic Solvents (DESs) as Green Extraction Media of Beneficial Bioactive Phytochemicals,” Separations, Vol 8, no. 10, 2021.
[9] B.-Y. Zhao, P. Xu, F.-X. Yang, H. Wu, M.-H. Zong, W.-Y. Lou, “Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica,” ACS Sustain. Chem. Eng., Vol 3, no. 11, 2015, pp. 2746-2755.
[10] A.P. Abbott, “Deep eutectic solvents and their application in electrochemistry,” Curr. Opin. Green Sustain. Chem., Vol 36, 2022, pp. 100649.
[11] I.M. Pateli, A.P. Abbott, G.R.T. Jenkin, J.M. Hartley, “Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents,” Green Chem., Vol 22, no. 23, 2020, pp. 8360-8368.
[12] L. Lomba, C.B. García, M.P. Ribate, B. Giner, E. Zuriaga, “Applications of Deep Eutectic Solvents Related to Health, Synthesis, and Extraction of Natural Based Chemicals,” Appl. Sci. –Basel, Vol 11, no. 21, 2021.
[13] M. Gull, M. Zhou, F.M. Fernández, M.A. Pasek, “Prebiotic Phosphate Ester Syntheses in a Deep Eutectic Solvent,” J. Mol. Evol., Vol 78, no. 2, 2014, pp. 109-117.
[14] J. Serna-Vázquez, M.Z. Ahmad, G. Boczkaj, R. Castro-Muñoz, “Latest Insights on Novel Deep Eutectic Solvents (DES) for Sustainable Extraction of Phenolic Compounds from Natural Sources,” Molecules, Vol 26, no. 16, 2021.
[15] Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y.H. Choi, “Natural deep eutectic solvents as new potential media for green technology,” Anal. Chim. Acta, Vol 766, 2013, pp. 61-68.
[16] J. Płotka-Wasylka, M. de la Guardia, V. Andruch, M. Vilková, “Deep eutectic solvents vs ionic liquids: Similarities and differences,” Microchem. J., Vol 159, 2020, pp. 105539.
[17] M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, “Organogels versus Hydrogels: Advantages, Challenges, and Applications,” Adv. Funct. Mater., Vol 33, no. 27, 2023, pp. 2301421.
[18] L.Y. Lu, S.L. Yuan, J. Wang, Y. Shen, S.W. Deng, L.Y. Xie, Q.X. Yang, “The Formation Mechanism of Hydrogels,” Curr. Stem Cell Rep., Vol 13, no. 7, 2018, pp. 490-496.
[19] G. Stojkov, Z. Niyazov, F. Picchioni, R.K. Bose, “Relationship between Structure and Rheology of Hydrogels for Various Applications,” Gels, Vol 7, no. 4, 2021.
[20] M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, K. Palomino, H. Magaña, E. Bucio, “Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials,” Gels, Vol 7, no. 4, 2021.
[21] S. Bashir, M. Hina, J. Iqbal, A.H. Rajpar, M.A. Mujtaba, N.A. Alghamdi, S. Wageh, K. Ramesh, S. Ramesh, “Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications,” Polymers, Vol 12, no. 11, 2020.
[22] E.M. Ahmed, Hydrogel: Preparation, “characterization, and applications: A review,” J. Adv. Res., Vol 6, no. 2, 2015, 105-121.
[23] H. Yang, Z. Cheng, P. Wu, Y. Wei, J. Jiang, Q. Xu, “Deep eutectic solvents regulation synthesis of multi-metal oxalate for electrocatalytic oxygen evolution reaction and supercapacitor applications,” Electrochim. Acta, Vol 427, 2022, pp. 140879.
[24] S. Hong, Y. Yuan, C. Liu, W. Chen, L. Chen, H. Lian, H. Liimatainen, “A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors,” J. Mater. Chem. C, Vol 8, no. 2, 2020, pp. 550-560.
[25] C.N. Gu, Y. Peng, J.J. Li, H. Wang, X.Q. Xie, X.Y. Cao, C.S. Liu, “Supramolecular G4 Eutectogels of Guanosine with Solvent-Induced Chiral Inversion and Excellent Electrochromic Activity,” Angew. Chem. Int. Ed., Vol 59, no. 42, 2020, pp. 18768-18773.
[26] H. Cruz, N. Jordão, P. Amorim, M. Dionísio, L.C. Branco, “Deep Eutectic Solvents as Suitable Electrolytes for Electrochromic Devices,” ACS Sustain. Chem. Eng., Vol 6, no. 2, 2018, pp. 2240-2249.
[27] W. Zhang, L. Dai, C. Yang, W. Xu, C. Qin, J. Wang, J. Sun, L. Dai, “A highly resilient conductive eutectogel with multi-environmental adaptability for strain sensor,” Polym. Test., Vol 132, 2024, pp. 108360.
[28] K. Fan, L. Wang, W. Wei, F. Wen, Y. Xu, X. Zhang, X. Guan, “Multifunctional self-healing eutectogels induced by supramolecular assembly for smart conductive materials, interface lubrication and dye adsorption,” Chem. Eng. J., Vol 441, 2022, pp. 136026.
[29] M. Wang, R. Li, G. Chen, S. Zhou, X. Feng, Y. Chen, M. He, D. Liu, T. Song, H. Qi, Highly Stretchable, “Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents,” ACS Appl. Mater. Interfaces, Vol 11, no. 15, 2019, pp. 14313-14321.
[30] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, “Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors,” ACS Appl. Mater. Interfaces, Vol 15, no. 27, 2023, pp. 33109-33118.
[31] J. Wang, S. Zhang, Z. Ma, L. Yan, “Deep eutectic solvents eutectogels: progress and challenges,” Green Chem. Eng., Vol 2, no. 4, 2021, pp. 359-367.
[32] M. Sheikhi, F. Rafiemanzelat, S. Ghodsi, L. Moroni, M. Setayeshmehr, “3D printing of jammed self-supporting microgels with alternative mechanism for shape fidelity, crosslinking and conductivity,” Addit. Manuf., Vol 58, 2022, pp. 102997.
[33] C.B. Highley, K.H. Song, A.C. Daly, J.A. Burdick, “Jammed Microgel Inks for 3D Printing Applications,” Adv. Sci., Vol 6, no. 1, 2019, pp. 1801076.
[34] L. Riley, L. Schirmer, T. Segura, “Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration,” Curr. Opin. Biotechnol., Vol 60, 2019, pp. 1-8.
[35] A.C. Daly, “Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives,” Adv. healthc. mater., pp. 2301388.
[36] H.-P. Lee, R. Davis, Jr., T.-C. Wang, K.A. Deo, K.X. Cai, D.L. Alge, T.P. Lele, A.K. Gaharwar, “Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery,” ACS Appl. Bio Mater., Vol 6, no. 9, 2023, pp. 3683-3695.
[37] A.C. Daly, L. Riley, T. Segura, J.A. Burdick, “Hydrogel microparticles for biomedical applications,” Nat. Rev. Mater., Vol 5, no. 1, 2020, pp. 20-43.
[38] J.K.U. Ling, K. Hadinoto, “Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review,” Int. J. Mol. Sci., Vol 23, no. 6, 2022.
[39] M.H. Shafie, C.-Y. Gan, “Could choline chloride-citric acid monohydrate molar ratio in deep eutectic solvent affect structural, functional and antioxidant properties of pectin?,” Int. J. Biol. Macromol., Vol 149, 2020, pp. 835-843.
[40] M.H. Shafie, R. Yusof, C.Y. Gan, “Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties,” J. Mol. Liq., Vol 288, 2019.
[41] J.D. Zhang, Y.Q. Liang, Z.X. Deng, H.R. Xu, H.L. Zhang, B.L. Guo, J. Zhang, “Adhesive Ion-Conducting Hydrogel Strain Sensor with High Sensitivity, Long-Term Stability, and Extreme Temperature Tolerance,” ACS Appl. Mater. Interfaces, Vol 15, no. 25, 2023, pp. 29902-29913.
[42] S. Kim, H. Choi, D. Son, M. Shin, “Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics,” Gels, Vol 9, no. 2, 2023, pp. 167.
[43] P. R. Varges, C. M. Costa, B. S. Fonseca, M. F. Naccache, P.R. De Souza Mendes, “Rheological Characterization of Carbopol® Dispersions in Water and in Water/Glycerol Solutions,” Fluids, Vol 4, no. 1, 2019, pp. 3.
[44] C. Gao, D. Yan, “Hyperbranched polymers: from synthesis to applications,” Prog. Polym. Sci., Vol 29, no. 3, 2004, pp. 183-275.
[45] V.G. Muir, S. Weintraub, A.P. Dhand, H. Fallahi, L. Han, J.A. Burdick, “Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties,” Adv. Sci., Vol 10, no. 10, 2023, pp. 2206117.
[46] A. Charlet, F. Bono, E. Amstad, “Mechanical reinforcement of granular hydrogels,” Chem Sci, Vol 13, no. 11, 2022, pp. 3082-3093.
[47] A. Sheikhi, J. de Rutte, R. Haghniaz, O. Akouissi, A. Sohrabi, D. Di Carlo, A. Khademhosseini, “Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads,” Biomaterials, Vol 192, 2019, pp. 560-568.
[48] J. Zhou, L. Wu, Y. Ge, Y. Gao, X. Ma, Y. Fang, “High-strength, stretchable, and self-recoverable copolymer-supported deep eutectic solvent gels based on dense and dynamic hydrogen bonding for high-voltage and safe flexible supercapacitors,” Polym. Bull., Vol 80, no. 5, 2023, pp. 5587-5605.
[49] Y.-C. Chiu, T.H. Vo, Y.-J. Sheng, H.-K. Tsao, “Spontaneous Formation of Microgels for a 3D Printing Supporting Medium,” ACS Appl. Polym. Mater., Vol 5, no. 1, 2023, pp. 764-774.
[50] P.B. Laxton, J.C. Berg, “Gel trapping of dense colloids,” J. Colloid Interface Sci., Vol 285, no. 1, 200, pp. 152-157.
[51] S. Kudo, S. Nakashima, “Changes in IR band areas and band shifts during water adsorption to lecithin and ceramide,” Spectrochim Acta A Mol Biomol Spectrosc, Vol 228, 2020, pp. 117779.
[52] F. Perakis, S. Widmer, P. Hamm, “Two-dimensional infrared spectroscopy of isotope-diluted ice Ih,” J Chem Phys, Vol 134, no. 20, 2011, pp. 204505.
[53] T.H. Vo, P.K. Lam, T.-F. Hsiao, C.-J.M. Chin, Y.-J. Sheng, H.-K. Tsao, “One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels,” J. Colloid Interface Sci., Vol 659, 2024, pp. 495-502. |