博碩士論文 111324078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.143.237.54
姓名 翁淳筠(Chun-Yun Weng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 具有黏著性、自修復性與可回收性的物理顆粒狀共熔凝膠應用於應變感測
(Adhesive, Self-Healing, and Recyclable Physical Granular Eutectogel for Strain Sensing)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 在此研究中,通過將 Carbopol 微凝膠與深共熔溶劑(DES)相結合,製備了不含聚合物網絡的物理顆粒共熔凝膠。DES 由氯化膽鹼作為氫鍵受體和檸檬酸作為氫鍵供體組成而成。當共熔凝膠含有超過 5 wt% Carbopol 濃度時能夠進行拉伸和剪切拉伸測試,同時表現出黏性表面並具有離子導電性。隨著 Carbopol 濃度的增加,拉伸強度增加,但黏著強度和離子導電性降低。具體而言,含有 10 wt% Carbopol 的共熔凝膠展示出優異的物理性能,包括拉伸強度為 45.3 kPa、可拉伸超過 1000% 應變、黏著強度為 4.66 kPa 和離子導電性為 0.43 mS/cm。紅外光譜分析顯示,DES 通過多個氫鍵在微凝膠之間起到物理交聯劑的作用,有助於形成顆粒共熔凝膠。因此,這些共熔凝膠也展現出自我修復性與可回收性能。此外,當共熔凝膠承受反復變形時,它們能夠產生穩定且一致的電阻信號,因此可應用於應變感測。
摘要(英) In this work, physical granular eutectogels were fabricated by incorporating Carbopol microgels into a deep eutectic solvent (DES) without a polymer network. The DES consists of choline chloride as the hydrogen bond acceptor and citric acid as the hydrogen bond donor. Eutectogels with more than 5 wt% Carbopol concentration are capable of undergoing tensile and lap shear testing, demonstrate sticky surfaces, and exhibit ionic conductivity. As the Carbopol concentration increases, the tensile strength rises, but the adhesive strength and ionic conductivity decrease. Specifically, a eutectogel containing 10 wt% Carbopol showcases outstanding physical properties, including a tensile strength of 45.3 kPa, stretchability exceeding 1000% strain, an adhesive strength of 4.66 kPa, and an ionic conductivity of 0.43 mS/cm. IR spectroscopy analysis reveals that DES acts as a physical crosslinker between microgels through multiple hydrogen bonds, facilitating the formation of granular eutectogels. Consequently, these eutectogels demonstrate self-healing and recyclability properties. Furthermore, they produce stable and consistent electrical resistance signals when subjected to repeated deformation, enabling their application in strain sensing.
關鍵字(中) ★ 共熔凝膠
★ 深共熔溶劑
★ 微凝膠
★ 自修復性
★ 應變感測
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
LIST OF CONTENTS iii
LIST OF FIGURES iv
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 EXPERIMENTS 4
2-1 Materials 4
2-2 Preparation of DESs and eutectogels 4
2-3 Material characterizations 4
2-3-1 Mechanical and adhesion tests 4
2-3-2 Conductivity Measurement. 5
CHAPTER 3 RESULTS AND DISCUSSIONS 6
3-1 Effect of Carbopol concentration on the mechanical properties 8
3-2 Self-healing, recyclablility, and hydrogen bonding 12
3-3 Ionic conductivity and adhesive strain sensor performance 17
CHAPTER 4 CONCLUSION 20
REFERENCE 22
參考文獻 [1] K.A. Omar, R. Sadeghi, “Physicochemical properties of deep eutectic solvents: A review,” J. Mol. Liq., Vol 360, 2022.
[2] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, “Deep Eutectic Solvents: A Review of Fundamentals and Applications,” Chem. Rev., Vol 121, no. 3, 2021, pp. 1232-1285.
[3] T. El Achkar, H. Greige-Gerges, S. Fourmentin, “Basics and properties of deep eutectic solvents: a review,” Environ. Chem, Vol 19, no. 4, 2021, pp. 3397-3408.
[4] E.L. Smith, A.P. Abbott, K.S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Chem. Rev., Vol 114, no. 21, 2014, pp. 11060-11082.
[5] S.-Y. Chang, Y.-J. Sheng, H.-K. Tsao, “Abnormal wetting behavior of supercooled deep eutectic solvents,” J. Mol. Liq., Vol 387, 2023, pp. 122617.
[6] R. Craveiro, I. Aroso, V. Flammia, T. Carvalho, M.T. Viciosa, M. Dionísio, S. Barreiros, R.L. Reis, A.R.C. Duarte, A. Paiva, “Properties and thermal behavior of natural deep eutectic solvents,” J. Mol. Liq., Vol 215, 2016, pp. 534-540.
[7] P. Suthar, M. Kaushal, D. Vaidya, M. Thakur, P. Chauhan, D. Angmo, S. Kashyap, N. Negi, “Deep eutectic solvents (DES): An update on the applications in food sectors,” J. Agric. Food Res., Vol 14, 2023, pp. 100678.
[8] A.S. Dheyab, M.F. Abu Bakar, M. AlOmar, S.F. Sabran, A.F.M. Hanafi, A. Mohamad, “Deep Eutectic Solvents (DESs) as Green Extraction Media of Beneficial Bioactive Phytochemicals,” Separations, Vol 8, no. 10, 2021.
[9] B.-Y. Zhao, P. Xu, F.-X. Yang, H. Wu, M.-H. Zong, W.-Y. Lou, “Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica,” ACS Sustain. Chem. Eng., Vol 3, no. 11, 2015, pp. 2746-2755.
[10] A.P. Abbott, “Deep eutectic solvents and their application in electrochemistry,” Curr. Opin. Green Sustain. Chem., Vol 36, 2022, pp. 100649.
[11] I.M. Pateli, A.P. Abbott, G.R.T. Jenkin, J.M. Hartley, “Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents,” Green Chem., Vol 22, no. 23, 2020, pp. 8360-8368.
[12] L. Lomba, C.B. García, M.P. Ribate, B. Giner, E. Zuriaga, “Applications of Deep Eutectic Solvents Related to Health, Synthesis, and Extraction of Natural Based Chemicals,” Appl. Sci. –Basel, Vol 11, no. 21, 2021.
[13] M. Gull, M. Zhou, F.M. Fernández, M.A. Pasek, “Prebiotic Phosphate Ester Syntheses in a Deep Eutectic Solvent,” J. Mol. Evol., Vol 78, no. 2, 2014, pp. 109-117.
[14] J. Serna-Vázquez, M.Z. Ahmad, G. Boczkaj, R. Castro-Muñoz, “Latest Insights on Novel Deep Eutectic Solvents (DES) for Sustainable Extraction of Phenolic Compounds from Natural Sources,” Molecules, Vol 26, no. 16, 2021.
[15] Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y.H. Choi, “Natural deep eutectic solvents as new potential media for green technology,” Anal. Chim. Acta, Vol 766, 2013, pp. 61-68.
[16] J. Płotka-Wasylka, M. de la Guardia, V. Andruch, M. Vilková, “Deep eutectic solvents vs ionic liquids: Similarities and differences,” Microchem. J., Vol 159, 2020, pp. 105539.
[17] M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, “Organogels versus Hydrogels: Advantages, Challenges, and Applications,” Adv. Funct. Mater., Vol 33, no. 27, 2023, pp. 2301421.
[18] L.Y. Lu, S.L. Yuan, J. Wang, Y. Shen, S.W. Deng, L.Y. Xie, Q.X. Yang, “The Formation Mechanism of Hydrogels,” Curr. Stem Cell Rep., Vol 13, no. 7, 2018, pp. 490-496.
[19] G. Stojkov, Z. Niyazov, F. Picchioni, R.K. Bose, “Relationship between Structure and Rheology of Hydrogels for Various Applications,” Gels, Vol 7, no. 4, 2021.
[20] M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, K. Palomino, H. Magaña, E. Bucio, “Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials,” Gels, Vol 7, no. 4, 2021.
[21] S. Bashir, M. Hina, J. Iqbal, A.H. Rajpar, M.A. Mujtaba, N.A. Alghamdi, S. Wageh, K. Ramesh, S. Ramesh, “Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications,” Polymers, Vol 12, no. 11, 2020.
[22] E.M. Ahmed, Hydrogel: Preparation, “characterization, and applications: A review,” J. Adv. Res., Vol 6, no. 2, 2015, 105-121.
[23] H. Yang, Z. Cheng, P. Wu, Y. Wei, J. Jiang, Q. Xu, “Deep eutectic solvents regulation synthesis of multi-metal oxalate for electrocatalytic oxygen evolution reaction and supercapacitor applications,” Electrochim. Acta, Vol 427, 2022, pp. 140879.
[24] S. Hong, Y. Yuan, C. Liu, W. Chen, L. Chen, H. Lian, H. Liimatainen, “A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors,” J. Mater. Chem. C, Vol 8, no. 2, 2020, pp. 550-560.
[25] C.N. Gu, Y. Peng, J.J. Li, H. Wang, X.Q. Xie, X.Y. Cao, C.S. Liu, “Supramolecular G4 Eutectogels of Guanosine with Solvent-Induced Chiral Inversion and Excellent Electrochromic Activity,” Angew. Chem. Int. Ed., Vol 59, no. 42, 2020, pp. 18768-18773.
[26] H. Cruz, N. Jordão, P. Amorim, M. Dionísio, L.C. Branco, “Deep Eutectic Solvents as Suitable Electrolytes for Electrochromic Devices,” ACS Sustain. Chem. Eng., Vol 6, no. 2, 2018, pp. 2240-2249.
[27] W. Zhang, L. Dai, C. Yang, W. Xu, C. Qin, J. Wang, J. Sun, L. Dai, “A highly resilient conductive eutectogel with multi-environmental adaptability for strain sensor,” Polym. Test., Vol 132, 2024, pp. 108360.
[28] K. Fan, L. Wang, W. Wei, F. Wen, Y. Xu, X. Zhang, X. Guan, “Multifunctional self-healing eutectogels induced by supramolecular assembly for smart conductive materials, interface lubrication and dye adsorption,” Chem. Eng. J., Vol 441, 2022, pp. 136026.
[29] M. Wang, R. Li, G. Chen, S. Zhou, X. Feng, Y. Chen, M. He, D. Liu, T. Song, H. Qi, Highly Stretchable, “Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents,” ACS Appl. Mater. Interfaces, Vol 11, no. 15, 2019, pp. 14313-14321.
[30] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, “Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors,” ACS Appl. Mater. Interfaces, Vol 15, no. 27, 2023, pp. 33109-33118.
[31] J. Wang, S. Zhang, Z. Ma, L. Yan, “Deep eutectic solvents eutectogels: progress and challenges,” Green Chem. Eng., Vol 2, no. 4, 2021, pp. 359-367.
[32] M. Sheikhi, F. Rafiemanzelat, S. Ghodsi, L. Moroni, M. Setayeshmehr, “3D printing of jammed self-supporting microgels with alternative mechanism for shape fidelity, crosslinking and conductivity,” Addit. Manuf., Vol 58, 2022, pp. 102997.
[33] C.B. Highley, K.H. Song, A.C. Daly, J.A. Burdick, “Jammed Microgel Inks for 3D Printing Applications,” Adv. Sci., Vol 6, no. 1, 2019, pp. 1801076.
[34] L. Riley, L. Schirmer, T. Segura, “Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration,” Curr. Opin. Biotechnol., Vol 60, 2019, pp. 1-8.
[35] A.C. Daly, “Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives,” Adv. healthc. mater., pp. 2301388.
[36] H.-P. Lee, R. Davis, Jr., T.-C. Wang, K.A. Deo, K.X. Cai, D.L. Alge, T.P. Lele, A.K. Gaharwar, “Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery,” ACS Appl. Bio Mater., Vol 6, no. 9, 2023, pp. 3683-3695.
[37] A.C. Daly, L. Riley, T. Segura, J.A. Burdick, “Hydrogel microparticles for biomedical applications,” Nat. Rev. Mater., Vol 5, no. 1, 2020, pp. 20-43.
[38] J.K.U. Ling, K. Hadinoto, “Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review,” Int. J. Mol. Sci., Vol 23, no. 6, 2022.
[39] M.H. Shafie, C.-Y. Gan, “Could choline chloride-citric acid monohydrate molar ratio in deep eutectic solvent affect structural, functional and antioxidant properties of pectin?,” Int. J. Biol. Macromol., Vol 149, 2020, pp. 835-843.
[40] M.H. Shafie, R. Yusof, C.Y. Gan, “Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties,” J. Mol. Liq., Vol 288, 2019.
[41] J.D. Zhang, Y.Q. Liang, Z.X. Deng, H.R. Xu, H.L. Zhang, B.L. Guo, J. Zhang, “Adhesive Ion-Conducting Hydrogel Strain Sensor with High Sensitivity, Long-Term Stability, and Extreme Temperature Tolerance,” ACS Appl. Mater. Interfaces, Vol 15, no. 25, 2023, pp. 29902-29913.
[42] S. Kim, H. Choi, D. Son, M. Shin, “Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics,” Gels, Vol 9, no. 2, 2023, pp. 167.
[43] P. R. Varges, C. M. Costa, B. S. Fonseca, M. F. Naccache, P.R. De Souza Mendes, “Rheological Characterization of Carbopol® Dispersions in Water and in Water/Glycerol Solutions,” Fluids, Vol 4, no. 1, 2019, pp. 3.
[44] C. Gao, D. Yan, “Hyperbranched polymers: from synthesis to applications,” Prog. Polym. Sci., Vol 29, no. 3, 2004, pp. 183-275.
[45] V.G. Muir, S. Weintraub, A.P. Dhand, H. Fallahi, L. Han, J.A. Burdick, “Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties,” Adv. Sci., Vol 10, no. 10, 2023, pp. 2206117.
[46] A. Charlet, F. Bono, E. Amstad, “Mechanical reinforcement of granular hydrogels,” Chem Sci, Vol 13, no. 11, 2022, pp. 3082-3093.
[47] A. Sheikhi, J. de Rutte, R. Haghniaz, O. Akouissi, A. Sohrabi, D. Di Carlo, A. Khademhosseini, “Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads,” Biomaterials, Vol 192, 2019, pp. 560-568.
[48] J. Zhou, L. Wu, Y. Ge, Y. Gao, X. Ma, Y. Fang, “High-strength, stretchable, and self-recoverable copolymer-supported deep eutectic solvent gels based on dense and dynamic hydrogen bonding for high-voltage and safe flexible supercapacitors,” Polym. Bull., Vol 80, no. 5, 2023, pp. 5587-5605.
[49] Y.-C. Chiu, T.H. Vo, Y.-J. Sheng, H.-K. Tsao, “Spontaneous Formation of Microgels for a 3D Printing Supporting Medium,” ACS Appl. Polym. Mater., Vol 5, no. 1, 2023, pp. 764-774.
[50] P.B. Laxton, J.C. Berg, “Gel trapping of dense colloids,” J. Colloid Interface Sci., Vol 285, no. 1, 200, pp. 152-157.
[51] S. Kudo, S. Nakashima, “Changes in IR band areas and band shifts during water adsorption to lecithin and ceramide,” Spectrochim Acta A Mol Biomol Spectrosc, Vol 228, 2020, pp. 117779.
[52] F. Perakis, S. Widmer, P. Hamm, “Two-dimensional infrared spectroscopy of isotope-diluted ice Ih,” J Chem Phys, Vol 134, no. 20, 2011, pp. 204505.
[53] T.H. Vo, P.K. Lam, T.-F. Hsiao, C.-J.M. Chin, Y.-J. Sheng, H.-K. Tsao, “One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels,” J. Colloid Interface Sci., Vol 659, 2024, pp. 495-502.
指導教授 曹恆光 審核日期 2024-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明