參考文獻 |
[1] S. Tanpichai, Y. Srimarut, W. Woraprayote, Y. Malila, “Chitosan coating for the preparation of multilayer coated paper for food-contact packaging: Wettability, mechanical properties, and overall migration,” Int. J. Biol. Macromol., Vol. 213, 2022, pp. 534-545.
[2] Y.-B. Li, Z.-N. Wen, B.-C. Sun, Y. Luo, K.-J. Gao, G.-W. Chu, “Flow patterns, liquid holdup, and wetting behavior of viscous liquids in a disk-distributor rotating packed bed,” Chem. Eng. Sci., Vol. 252, 2022, p. 117256.
[3] H. Zhang, L. Sun, J. Guo, Y. Zhao, “Hierarchical Spinning of Janus Textiles with Anisotropic Wettability for Wound Healing,” Research, Vol. 6, 2023, p. 0129.
[4] T. Young, “III. An essay on the cohesion of fluids,” Philos. Trans. R. Soc., Vol. No. 95, 1805, pp. 65-87.
[5] N. K. Adam, “Use of the Term ‘Young’s Equation’ for Contact Angles,” Nature, Vol. 180, No. 4590, 1957, pp. 809-810.
[6] P. Roura, J. Fort, “Local thermodynamic derivation of Young’s equation,” J. Colloid Interface Sci., Vol. 272, No. 2, 2004, pp. 420-429.
[7] D. Seveno, T. D. Blake, J. De Coninck, “Young’s Equation at the Nanoscale,” Phys. Rev. Lett., Vol. 111, No. 9, 2013, p. 096101.
[8] C. Li, J. Zhang, J. Han, B. Yao, “A numerical solution to the effects of surface roughness on water-coal contact angle,” Sci. Rep., Vol. 11, No. 1, 2021, p. 459.
[9] J. Feng, Z. Guo, “Wettability of graphene: from influencing factors and reversible conversions to potential applications,” Nanoscale Horizons, Vol. 4, No. 2, 2019, pp. 339-364.
[10] B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, “Graphene-based composites for electrochemical energy storage,” Energy Storage Mater., Vol. 24, 2020, pp. 22-51.
[11] K. Natesan, S. Karinka, “A comprehensive review of heat transfer enhancement of heat exchanger, heat pipe and electronic components using graphene,” Case Stud. Therm. Eng., Vol. 45, 2023, p. 102874.
[12] S. Ghosh, T. Mathews, B. Gupta, A. Das, N. Gopala Krishna, M. Kamruddin, “Supercapacitive vertical graphene nanosheets in aqueous electrolytes,” Nano-Struct. Nano-Objects, Vol. 10, 2017, pp. 42-50.
[13] B. Sohrabi, R. Jafari, A. Seidi, “The role of polarization effect on the hydrophobicity of graphene and graphene-based devices: Theoretical and computational studies,” Comput. Mater.Sci., Vol. 200, 2021, p. 110781.
[14] A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, L. Li, “Understanding the intrinsic water wettability of graphite,” Carbon, Vol. 74, 2014, pp. 218-225.
[15] A. Kozbial, C. Trouba, H. Liu, L. Li, “Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles,” Langmuir, Vol. 33, No. 4, 2017, pp. 959-967.
[16] R. Seki, H. Takamatsu, Y. Suzuki, Y. Oya, T. Ohba, “Hydrophobic-to-hydrophilic affinity change of sub-monolayer water molecules at water–graphene interfaces,” Colloids Surf. A: Physicochem. Eng. Asp., Vol. 628, 2021, p. 127393.
[17] C.-J. Shih, Q. H. Wang, S. Lin, K.-C. Park, Z. Jin, M.S. Strano, D. Blankschtein, “Breakdown in the Wetting Transparency of Graphene,” Phys. Rev. Lett., Vol. 109, No. 17, 2012, p. 176101.
[18] C. D. van Engers, N. E. A. Cousens, V. Babenko, J. Britton, B. Zappone, N. Grobert, S. Perkin, “Direct Measurement of the Surface Energy of Graphene,” Nano Lett., Vol. 17, No. 6, 2017, pp. 3815-3821.
[19] T.-Y. Wang, H.-Y. Chang, G.-Y. He, H.-K. Tsao, Y.-J. Sheng, “Anomalous spontaneous capillary flow of water through graphene nanoslits: Channel width-dependent density,” J. Mol. Liq., Vol. 352, 2022, p. 118701.
[20] U. Halim, C. R. Zheng, Y. Chen, Z. Lin, S. Jiang, R. Cheng, Y. Huang, X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction,” Nat. Commun., Vol. 4, No. 1, 2013, p. 2213.
[21] C. Vacacela Gomez, M. Guevara, T. Tene, L. Villamagua, G. T. Usca, F. Maldonado, C. Tapia, A. Cataldo, S. Bellucci, L. S. Caputi, “The liquid exfoliation of graphene in polar solvents,” Appl. Surf. Sci., Vol. 546, 2021, p. 149046.
[22] H.-Y. Chang, H.-K. Tsao, Y.-J. Sheng, “Abnormal wicking dynamics of total wetting ethanol in graphene nanochannels,” Phys. Fluids, Vol. 35, No. 5, 2023.
[23] J. A. Morton, A. Kaur, M. Khavari, A. V. Tyurnina, A. Priyadarshi, D. G. Eskin, J. Mi, K. Porfyrakis, P. Prentice, I. Tzanakis, “An eco-friendly solution for liquid phase exfoliation of graphite under optimised ultrasonication conditions,” Carbon, Vol. 204, 2023, pp. 434-446.
[24] K. Nuthalapati, Y.-J. Sheng, H.-K. Tsao, “Atypical wetting behavior of binary mixtures of partial and total wetting liquids: leak-out phenomena,” Colloids Surf. A: Physicochem. Eng. Asp., Vol. 666, 2023, p. 131299.
[25] K. Sefiane, L. Tadrist, M. Douglas, “Experimental study of evaporating water–ethanol mixture sessile drop: influence of concentration,” Int. J. Heat Mass Transf., Vol. 46, No. 23, 2003, pp. 4527-4534.
[26] P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys., Vol. 57, No. 3, 1985, pp. 827-863.
[27] F. Oktasendra, A. Jusufi, A. R. Konicek, M. S. Yeganeh, J. R. Panter, H. Kusumaatmaja, “Phase field simulation of liquid filling on grooved surfaces for complete, partial, and pseudo-partial wetting cases,” J. Chem. Phys., Vol. 158, No. 20, 2023.
[28] F. Brochard-Wyart, J. M. Di Meglio, D. Quere, P. G. De Gennes, “Spreading of nonvolatile liquids in a continuum picture,” Langmuir, Vol. 7, No. 2, 1991, pp. 335-338.
[29] P. Silberzan, L. Léger, “Evidence for a new spreading regime between partial and total wetting,” Phys. Rev. Lett., Vol. 66, No. 2, 1991, pp. 185-188.
[30] M. N. Popescu, G. Oshanin, S. Dietrich, A. M. Cazabat, “Precursor films in wetting phenomena,” J. Phys. Condens. Matter, Vol. 24, No. 24, 2012, p. 243102.
[31] Y.-H. Weng, C.-J. Wu, H.-K. Tsao, Y.-J. Sheng, “Spreading dynamics of a precursor film of nanodrops on total wetting surfaces,” Phys. Chem. Chem. Phys., Vol. 19, No. 40, 2017, pp. 27786-27794.
[32] S. Shiomoto, H. Higuchi, K. Yamaguchi, H. Takaba, M. Kobayashi, “Spreading Dynamics of a Precursor Film of Ionic Liquid or Water on a Micropatterned Polyelectrolyte Brush Surface,” Langmuir, Vol. 37, No. 10, 2021, pp. 3049-3056.
[33] L. Chen, E. Bonaccurso, “Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops,” Phys. Rev. E, Vol. 90, No. 2, 2014, p. 022401.
[34] P. G. Bange, G. Upadhyay, N. D. Patil, R. Bhardwaj, “Isothermal and non-isothermal spreading of a viscous droplet on a solid surface in total wetting condition,” Phys. Fluids, Vol. 34, No. 11, 2022.
[35] A. Azimi Yancheshme, G. R. Palmese, N. J. Alvarez, “A generalized scaling theory for spontaneous spreading of Newtonian fluids on solid substrates,” J. Colloid Interface Sci., Vol. 636, 2023, pp. 677-688.
[36] D. Guo, H. Liu, L. Zhou, J. Xie, C. He, “Plasma-activated water production and its application in agriculture,” J. Sci. Food Agric., Vol. 101, No. 12, 2021, pp. 4891-4899.
[37] M. Jayapal, H. Jagadeesan, V. Krishnasamy, G. Shanmugam, V. Muniyappan, D. Chidambaram, S. Krishnamurthy, “Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater,” Environ. Pollut., Vol. 302, 2022, p. 119009.
[38] G. Vazquez, E. Alvarez, J. M. Navaza, “Surface Tension of Alcohol Water + Water from 20 to 50 .degree.C,” J. Chem. Eng. Data, Vol. 40, No. 3, 1995, pp. 611-614.
[39] P. Basařová, T. Váchová, L. Bartovská, “Atypical wetting behaviour of alcohol–water mixtures on hydrophobic surfaces,” Colloids Surf. A: Physicochem. Eng. Asp., Vol. 489, 2016, pp. 200-206.
[40] Y.-T. Cheng, K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, “Size-dependent behavior and failure of young’s equation for wetting of two-component nanodroplets,” J. Colloid Interface Sci., Vol. 578, 2020, pp. 69-76.
[41] A. Fabien, G. Lefebvre, B. Calvignac, P. Legout, E. Badens, C. Crampon, “Interfacial tension of ethanol, water, and their mixtures in high pressure carbon dioxide: Measurements and modeling,” J. Colloid Interface Sci., Vol. 613, 2022, pp. 847-856.
[42] F. Brochard-Wyart, R. Fondecave, M. Boudoussier, “Wetting of antagonist mixtures: the ‘leak out’ transition,” Int. J. Eng. Sci., Vol. 38, No. 9, 2000, pp. 1033-1047.
[43] H.-J. Huang, K. Nuthalapati, Y.-J. Sheng, H.-K. Tsao, “Precursor film of self-propelled droplets: Inducing motion of a static droplet,” Journal of Molecular Liquids, Vol. 368, 2022, p. 120729.
[44] U. Anand, T. Ghosh, Z. Aabdin, S. Koneti, X. Xu, F. Holsteyns, U. Mirsaidov, “Dynamics of thin precursor film in wetting of nanopatterned surfaces,” Proc. Natl. Acad. Sci. U.S.A., Vol. 118, No. 38, 2021, p. e2108074118.
[45] W.-Z. Hsieh, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, “Diverse wetting behavior of a binary mixture of antagonist liquids: Nanodroplet with finite precursor film and leak-out phenomenon,” J. Mol. Liq., Vol. 372, 2023, p. 121197.
[46] M. Roché, L. Talini, E. Verneuil, “Complexity in Wetting Dynamics,” Langmuir, Vol. 40, No. 6, 2024, pp. 2830-2848.
[47] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, “NAMD2: Greater Scalability for Parallel Molecular Dynamics,” J. Chem. Phys., Vol. 151, No. 1, 1999, pp. 283-312.
[48] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, “Scalable molecular dynamics with NAMD,” J. Comput. Chem., Vol. 26, No. 16, 2005, pp. 1781-1802.
[49] W. Jiang, J. C. Phillips, L. Huang, M. Fajer, Y. Meng, J. C. Gumbart, Y. Luo, K. Schulten, B. Roux, “Generalized scalable multiple copy algorithms for molecular dynamics simulations in NAMD,” Comput. Phys. Commun., Vol. 185, No. 3, 2014, pp. 908-916.
[50] J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L.V. Kalé, K. Schulten, C. Chipot, E. Tajkhorshid, “Scalable molecular dynamics on CPU and GPU architectures with NAMD,” J. Chem. Phys., Vol. 153, No. 4, 2020.
[51] W. Humphrey, A. Dalke, K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph., Vol. 14, No. 1, 1996, pp. 33-38.
[52] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Mackerell Jr., “CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields,” J. Comput. Chem., Vol. 31, No. 4, 2010, pp. 671-690.
[53] S. A. Deshmukh, G. Kamath, S. K. R. S. Sankaranarayanan, “Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets,” Soft Matter, Vol. 10, No. 23, 2014, pp. 4067-4083.
[54] T. K. Mukhopadhyay, A. Datta, “Deciphering the Role of Solvents in the Liquid Phase Exfoliation of Hexagonal Boron Nitride: A Molecular Dynamics Simulation Study,” J. Phys. Chem. C, Vol. 121, No. 1, 2017, pp. 811-822.
[55] J. L. F. Abascal, C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” Chem. Phys. Lett.., Vol. 123, No. 23, 2005.
[56] J. Włoch, A. P. Terzyk, P. Kowalczyk, “New forcefield for water nanodroplet on a graphene surface,” Chem. Phys. Lett., Vol. 674, 2017, pp. 98-102.
[57] J. J. Potoff, J. R. Errington, A. Z. Panagiotopoulos, “Molecular simulation of phase equilibria for mixtures of polar and non-polar components,” Mol. Phys., Vol. 97, No. 10, 1999, pp. 1073-1083.
[58] T. Darden, D. York, L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” J. Chem. Phys., Vol. 98, No. 12, 1993, pp. 10089-10092.
[59] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method,” J. Chem. Phys., Vol. 103, No. 19, 1995, pp. 8577-8593.
[60] J. G. Kirkwood, F. P. Buff, “The Statistical Mechanical Theory of Surface Tension,” J. Chem. Phys., Vol. 17, No. 3, 1949, pp. 338-343.
[61] J. H. Irving, J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” J. Chem. Phys., Vol. 18, No. 6, 1950, pp. 817-829.
[62] M. Rao, B. J. Berne, “On the location of surface of tension in the planar interface between liquid and vapour,” Mol. Phys., Vol. 37, No. 2, 1979, pp. 455-461.
[63] M. K. Gilson, J. A. Given, B. L. Bush, J. A. McCammon, “The statistical-thermodynamic basis for computation of binding affinities: a critical review,” Biophys. J., Vol. 72, No. 3, 1997, pp. 1047-1069.
[64] J. Hénin, J. Gumbart, C. Chipot, “In silico alchemy: A tutorial for alchemical free-energy perturbation calculations with NAMD,” Centre National de la Recherche Scientifique, University of Illinois, Urbana–Champaign, Vol. 2017.
[65] H. Chen, J. D. C. Maia, B. K. Radak, D. J. Hardy, W. Cai, C. Chipot, E. Tajkhorshid, “Boosting Free-Energy Perturbation Calculations with GPU-Accelerated NAMD,” J. Chem. Inf. Model., Vol. 60, No. 11, 2020, pp. 5301-5307.
[66] M.-C. Hsieh, Y.-H. Tsao, Y.-J. Sheng, H.-K. Tsao, “Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution,” Polymers, Vol. 15, No. 9, 2023, p. 2067.
[67] W.-J. Liao, K.-C. Chu, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, “Size-dependence and interfacial segregation in nanofilms and nanodroplets of homologous polymer blends,” Phys. Chem. Chem. Phys., Vol. 22, No. 38, 2020, pp. 21801-21808. |