博碩士論文 111223042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:52.15.116.59
姓名 黃莉芸(Li-Yun Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以MIL-101(Cr)作為吸附劑結合MALDI-TOF-MS快速檢測環境水樣中二苯甲酮類化合物的殘留
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 基於能擴展 MALDI-TOF-MS 在小分子領域的應用,及對其能廣泛使用於檢測防曬產品中的二苯甲酮類化合物在環境中的殘留,與對人體及生態環境造成危害的擔憂,本研究利用對環境友善的無溶劑法合成金屬有機骨架材料(Metal Organic Frameworks, MOFs)MIL-101(Cr)並將其作為MALDI-TOF-MS檢測環境水樣中二苯甲酮類化合物殘留的吸附劑及基質,藉由減少脫附過程及 MALDI-TOF-MS 樣品消耗低、檢測速度快等特性開發出的新穎檢測方法。
藉由針對吸附劑用量、萃取時間、水樣酸鹼值、使用分散溶劑這四個條件進行萃取條件的優化,以提升檢測效果。
本研究方法中對四種待測物的檢量線濃度範圍介於 0.020-0.2 mM 之間,偵測極限均介於 0.0010-0.0013 mM 之間,R2≥0.9674 且精密度 RSD≤6%,認證此方法具有良好的線性關係及精密度。在實際應用於環境水樣中的萃取回收率均介於 67%-96%之間,相對標準偏差皆小於 6%,顯示方法具有良好的回收率及低的基質干擾。
簡而言之,本研究方法開發出了結合 MALDI-TOF-MS 的快速檢測環境水樣中防曬劑成分二苯甲酮類化合物殘留的方法,成功擴大MALDI-TOF-MS在小分子方面的應用。
摘要(英) To expand the applications of matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in the field of small molecules detection, in this study, we successfully synthesized metal organic frameworks (MOFs) MIL-101 (Cr) by solvent-free method, and applied MIL-101 (Cr) as the adsorbent for dispersive micro solid-phase extraction (DmSPE), and then, the MIL-101 can be directly applied as matrix for MALDI-TOF-MS to determine benzophenones (BPs) residues in environmental water samples. We explore the application of MIL-101 (Cr) as both the adsorbent and matrix for MALDI for the enrichment and analysis of BPs. The developed method reduced the steps of analysis, i.e., no solvent desorption, and speed-up the multi-target analytes detection, i.e., no chromatography.
Four key experimental conditions were evaluated and optimized, such as, the adsorbent amount, extraction time, pH value of water sample, and dispersive solvent used. After
optimization, the limits of detection (LOD) of the method ranged between 0.020-0.2 mM. Precision was evaluated using intra-day and inter-day analyses, with relative standard
deviations (RSD) of all below 6%, and R2 of linearities were large than 0.9674, indicating good repeatability and linear relationship of the method. The extraction recovery rates in real environmental water samples were between 67% and 96%, and the RSD were less than 6%, showing that the method has a good recovery and repeatability rates in environmental water
samples. In short, we developed an analytical method for the rapid detection of BPs residues in environmental water samples by coupling with MOF, DmSPE and MALDI-TOF-MS, and
moreover, successfully expanded the application of MALDI-TOF-MS in small molecules detection.
關鍵字(中) ★ 基質輔助雷射脫附游離飛行時間質譜儀
★ 二苯甲酮類化合物
★ 金屬有機骨架材料MIL-101(Cr)
關鍵字(英) ★ Matrix-assisted laser desorption/ionization
★ Benzophenones
★ metal-organic framework-MIL-101 (Cr)
論文目次 摘要 I
ABSTRACT II
謝誌 III
圖目錄 VI
表目錄 VII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標 2
第二章 文獻探討 3
2-1 金屬有機骨架材料 3
2-1-1 介紹 3
2-1-2 MIL 系列 4
2-1-3 無溶劑合成法 (Solvent-Free Synthesis) 4
2-1-4 吸附機制 6
2-2 基質輔助雷射脫附游離飛行時間質譜儀 9
2-3 防曬乳成份 10
2-3-1 二苯甲酮類化合物(Benzophenones, 簡稱 BPs) 10
2-3-2 對環境及人類的影響 11
2-3-3 相關規範 12
2-4 分散式固相微萃取法 12
第三章 實驗步驟與樣品分析 13
3-1 實驗藥品與設備 13
3-1-1 實驗藥品 13
3-1-2 儀器設備 14
3-2 實驗步驟 15
3-2-1 標準品配製 15
3-2-2MALDI-TOF-MS 設定 15
3-2-3 質量校正 15
3-2-4 金屬有機骨架材料之合成 16
3-2-5 分散式固相微萃取法 17
3-2-6 樣品來源 18
第四章 結果與討論 19
4-1 各材料對待測物吸附能力之測定 19
4-2 金屬有機骨架材料 MIL-101(Cr)鑑定與性質探討 20
4-2-1 X 射線繞射圖譜 20
4-2-2 熱重分析圖 21
4-2-3 氮氣等溫吸脫附圖 22
4-2-4 高解析掃描式電子顯微鏡影像 23
4-3 MIL-101(Cr)作為 MALDI-TOF-MS 基質能力測定 24
4-4 分散式固相微萃取法條件優化 25
4-4-1 吸附劑的用量 25
4-4-2 吸附時間 26
4-4-3 水樣酸鹼值 27
4-4-4 分散溶劑選擇 28
4-5 檢量線與偵測極限 29
4-6 方法準確度與精密度 30
4-7 真實樣品檢測 31
第五章 結論 33
第六章 參考文獻 34
附錄 39
附錄一 MIL-101(Cr)材料之 X 射線繞射圖譜 39
附錄二 MIL-101(Cr)材料之熱重分析圖 40
附錄三 MIL-101(Cr)材料之氮氣等溫吸脫附圖及比表面積 41
附錄四 MIL-101(Cr)材料之電子顯微鏡影像 42
參考文獻 1. El-Yazbi, A. F., Khalil, H. A., Belal, T. S., & Eman, I. (2022). Inexpensive
bioluminescent genosensor for sensitive determination of DNA damage induced by
some commonly used sunscreens. Analytical Biochemistry, 651, 114700.
2. Li, Y., Qiao, X., Zhou, C., Zhang, Y. N., Fu, Z., & Chen, J. (2016). Photochemical
transformation of sunscreen agent benzophenone-3 and its metabolite in surface
freshwater and seawater. Chemosphere, 153, 494-499.
3. Wu, M. H., Xie, D. G., Xu, G., Sun, R., Xia, X. Y., Liu, W. L., & Tang, L. (2017).
Benzophenone-type UV filters in surface waters: An assessment of profiles and
ecological risks in Shanghai, China. Ecotoxicology and environmental safety, 141, 235-
241.
4. Cuccaro, A., Freitas, R., De Marchi, L., Oliva, M., & Pretti, C. (2022). UV-filters in
marine environments: a review of research trends, meta-analysis, and ecotoxicological
impacts of 4-methylbenzylidene-camphor and benzophenone-3 on marine invertebrate
communities. Environmental Science and Pollution Research, 29(43), 64370-64391.
5. Ku, P. C., Liu, T. Y., Lee, S. H., Kung, T. A., & Wang, W. H. (2020). An
environmentally friendly strategy for determining organic ultraviolet filters in seawater
using liquid-phase microextraction with liquid chromatography–tandem mass
spectrometry. Environmental Science and Pollution Research, 27, 9818-9825.
6. Jeon, H. K., Chung, Y., & Ryu, J. C. (2006). Simultaneous determination of
benzophenone-type UV filters in water and soil by gas chromatography–mass
spectrometry. Journal of Chromatography A, 1131(1-2), 192-202.
7. Sharmin, E., & Zafar, F. (2016). Introductory chapter: metal organic frameworks
(MOFs). In Metal-organic frameworks. IntechOpen.
8. Zhou, H. C., Long, J. R., & Yaghi, O. M. (2012). Introduction to metal–organic
frameworks. Chemical reviews, 112(2), 673-674.
9. Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., ... & Yaghi, O. M.
(2010). Ultrahigh porosity in metal-organic frameworks. Science, 329(5990), 424-428.
10. Farha, O. K., Özgür Yazaydın, A., Eryazici, I., Malliakas, C. D., Hauser, B. G.,
Kanatzidis, M. G., ... & Hupp, J. T. (2010). De novo synthesis of a metal–organic
framework material featuring ultrahigh surface area and gas storage capacities. Nature
chemistry, 2(11), 944-948.
11. Deeraj, B. D. S., Jayan, J. S., Raman, A., Asok, A., Paul, R., Saritha, A., & Joseph, K.
(2023). A comprehensive review of recent developments in metal-organic
framework/polymer composites and their applications. Surfaces and Interfaces, 43,
103574.
12. Tchinsa, A., Hossain, M. F., Wang, T., & Zhou, Y. (2021). Removal of organic
pollutants from aqueous solution using metal organic frameworks (MOFs)-based
adsorbents: A review. Chemosphere, 284, 131393.
13. Fatima, S. F., Sabouni, R., Garg, R., & Gomaa, H. (2023). Recent advances in MetalOrganic Frameworks as nanocarriers for triggered release of anticancer drugs: Brief
history, biomedical applications, challenges and future perspective. Colloids and
Surfaces B: Biointerfaces, 113266.
14. Cui, H., Ye, Y., Liu, T., Alothman, Z. A., Alduhaish, O., Lin, R. B., & Chen, B. (2020).
Isoreticular microporous metal–organic frameworks for carbon dioxide
capture. Inorganic chemistry, 59(23), 17143-17148.
15. Aris, A. Z., Hir, Z. A. M., & Razak, M. R. (2020). Metal-organic frameworks (MOFs)
for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from
aqueous solution: A review. Applied Materials Today, 21, 100796.
16. Bourrelly, S., Llewellyn, P. L., Serre, C., Millange, F., Loiseau, T., & Férey, G. (2005).
Different adsorption behaviors of methane and carbon dioxide in the isotypic
nanoporous metal terephthalates MIL-53 and MIL-47. Journal of the American
Chemical Society, 127(39), 13519-13521.
17. Surblé, S., Serre, C., Mellot-Draznieks, C., Millange, F., & Férey, G. (2006). A new
isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chemical
communications, (3), 284-286.
18. Horcajada, P., Surblé, S., Serre, C., Hong, D. Y., Seo, Y. K., Chang, J. S., ... & Férey,
G. (2007). Synthesis and catalytic properties of MIL-100 (Fe), an iron (III) carboxylate
with large pores. Chemical Communications, (27), 2820-2822.
19. Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., &
Margiolaki, I. (2005). A chromium terephthalate-based solid with unusually large pore
volumes and surface area. Science, 309(5743), 2040-2042.
20. Li, G., He, X., Yin, F., Chen, B., & Yin, H. (2019). Co-Fe/MIL-101 (Cr) hybrid catalysts:
Preparation and their electrocatalysis in oxygen reduction reaction. International
Journal of Hydrogen Energy, 44(23), 11754-11764.
21. Tang, Y., Yin, X., Mu, M., Jiang, Y., Li, X., Zhang, H., & Ouyang, T. (2020). Anatase
TiO2@ MIL-101 (Cr) nanocomposite for photocatalytic degradation of bisphenol
A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 596, 124745.
22. Kavun, V., van der Veen, M. A., & Repo, E. (2021). Selective recovery and separation
of rare earth elements by organophosphorus modified MIL-101 (Cr). Microporous and
Mesoporous Materials, 312, 110747.
23. Zou, M., Dong, M., & Zhao, T. (2022). Advances in metal-organic frameworks MIL101 (Cr). International Journal of Molecular Sciences, 23(16), 9396.
24. Leng, K., Sun, Y., Li, X., Sun, S., & Xu, W. (2016). Rapid synthesis of metal–organic
frameworks MIL-101 (Cr) without the addition of solvent and hydrofluoric
acid. Crystal Growth & Design, 16(3), 1168-1171.
25. Zhao, Z., Li, X., Huang, S., Xia, Q., & Li, Z. (2011). Adsorption and diffusion of
benzene on chromium-based metal organic framework MIL-101 synthesized by
microwave irradiation. Industrial & Engineering Chemistry Research, 50(4), 2254-
2261.
26. Bromberg, L., Diao, Y., Wu, H., Speakman, S. A., & Hatton, T. A. (2012). Chromium
(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure,
polyoxometalate composites, and catalytic properties. Chemistry of Materials, 24(9),
1664-1675.
27. Kayal, S., Sun, B., & Chakraborty, A. (2015). Study of metal-organic framework MIL101 (Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic
frameworks). Energy, 91, 772-781.
28. Zhao, T., Li, S. H., Shen, L., Wang, Y., & Yang, X. Y. (2018). The sized controlled
synthesis of MIL-101 (Cr) with enhanced CO2 adsorption property. Inorganic
Chemistry Communications, 96, 47-51.
29. Fallah, M., & Sohrabnezhad, S. (2019). Study of synthesis of mordenite zeolite/MIL101 (Cr) metal–organic framework compounds with various methods as bi-functional
adsorbent. Advanced Powder Technology, 30(2), 336-346.
30. Hong, D. Y., Hwang, Y. K., Serre, C., Ferey, G., & Chang, J. S. (2009). Porous
chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface
functionalization, encapsulation, sorption and catalysis. Advanced Functional
Materials, 19(10), 1537-1552.
31. Qin, Z., Jiang, Y., Piao, H., Li, J., Tao, S., Ma, P., ... & Sun, Y. (2020). MIL101(Cr)/MWCNTs-functionalized melamine sponges for solid-phase extraction of
triazines from corn samples, and their subsequent determination by HPLCMS/MS. Talanta, 211, 120676.
32. Darvishnejad, F., Raoof, J. B., & Ghani, M. (2020). MIL-101 (Cr)@ graphene oxidereinforced hollow fiber solid-phase microextraction coupled with high-performance
liquid chromatography to determine diazinon and chlorpyrifos in tomato, cucumber and
agricultural water. Analytica Chimica Acta, 1140, 99-110.
33. Dai, X., Jia, X., Zhao, P., Wang, T., Wang, J., Huang, P., ... & Hou, X. (2016). A
combined experimental/computational study on metal-organic framework MIL-101 (Cr)
as a SPE sorbent for the determination of sulphonamides in environmental water
samples coupling with UPLC-MS/MS. Talanta, 154, 581-588.
34. Lv, Z., Yang, C., Pang, Y., Xie, W., & Shen, X. (2019). Dispersive solid-phase
extraction using the metal–organic framework MIL-101 (Cr) for determination of benzo
(a) pyrene in edible oil. Analytical methods, 11(27), 3467-3473.
35. Liao, Y., Zhang, Y., Zhao, Q., Xiang, W., Jiao, B., & Su, X. (2022). MIL-101 (Cr) based
d-SPE/UPLC-MS/MS for determination of neonicotinoid insecticides in
beverages. Microchemical Journal, 175, 107091.
36. Du, F., Qin, Q., Deng, J., Ruan, G., Yang, X., Li, L., & Li, J. (2016). Magnetic metal–
organic framework MIL‐100 (Fe) microspheres for the magnetic solid‐phase extraction
of trace polycyclic aromatic hydrocarbons from water samples. Journal of Separation
Science, 39(12), 2356-2364.
37. Lei, Y., Chen, B., You, L., He, M., & Hu, B. (2017). Polydimethylsiloxane/MIL-100
(Fe) coated stir bar sorptive extraction-high performance liquid chromatography for the
determination of triazines in environmental water samples. Talanta, 175, 158-167.
38. Liu, Q., Yao, C., Liu, J., Wang, S., Shao, B., & Yao, K. (2021). An efficient method to
enrich, detect and remove bisphenol A based on Fe3O4@ MIL-100
(Fe). Microchemical Journal, 165, 106168.
39. Sangsuwan, A., Narupai, B., Sae-ung, P., Rodtamai, S., Rodthongkum, N., & Hoven, V.
P. (2015). Patterned poly (acrylic acid) brushes containing gold nanoparticles for
peptide detection by surface-assisted laser desorption/ionization mass
spectrometry. Analytical chemistry, 87(21), 10738-10746.
40. Lorey, M., Adler, B., Yan, H., Soliymani, R., Ekstrom, S., Yli-Kauhaluoma, J., ... &
Baumann, M. (2015). Mass-tag enhanced immuno-laser desorption/ionization mass
spectrometry for sensitive detection of intact protein antigens. Analytical
chemistry, 87(10), 5255-5262.
41. Wu, H. P., Yu, C. J., Lin, C. Y., Lin, Y. H., & Tseng, W. L. (2009). Gold nanoparticles
as assisted matrices for the detection of biomolecules in a high-salt solution through
laser desorption/ionization mass spectrometry. Journal of the American Society for
Mass Spectrometry, 20, 875-882.
42. Gholipour, Y., Giudicessi, S. L., Nonami, H., & Erra-Balsells, R. (2010). Diamond,
titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide
nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass
spectrometry analysis of carbohydrates in plant tissues. Analytical chemistry, 82(13),
5518-5526.
43. Nordström, A., Apon, J. V., Uritboonthai, W., Go, E. P., & Siuzdak, G. (2006).
Surfactant-enhanced desorption/ionization on silicon mass spectrometry. Analytical
chemistry, 78(1), 272-278.
44. Lin, Z., Zheng, J., Lin, G., Tang, Z., Yang, X., & Cai, Z. (2015). Negative ion laser
desorption/ionization time-of-flight mass spectrometric analysis of small molecules
using graphitic carbon nitride nanosheet matrix. Analytical chemistry, 87(15), 8005-
8012.
45. Ghazipura, M., McGowan, R., Arslan, A., & Hossain, T. (2017). Exposure to
benzophenone-3 and reproductive toxicity: a systematic review of human and animal
studies. Reproductive Toxicology, 73, 175-183.
46. Guo, Q., Wei, D., Zhao, H., & Du, Y. (2020). Predicted no-effect concentrations
determination and ecological risk assessment for benzophenone-type UV filters in
aquatic environment. Environmental Pollution, 256, 113460.
47. Khanum, S. A., Shashikanth, S., & Deepak, A. V. (2004). Synthesis and antiinflammatory activity of benzophenone analogues. Bioorganic chemistry, 32(4), 211-
222.
48. Khanum, S. A., Girish, V., Suparshwa, S. S., & Khanum, N. F. (2009). BenzophenoneN-ethyl piperidine ether analogues—Synthesis and efficacy as anti-inflammatory
agent. Bioorganic & medicinal chemistry letters, 19(7), 1887-1891.
49. Kim, S., Jung, D., Kho, Y., & Choi, K. (2014). Effects of benzophenone-3 exposure on
endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)—A two
generation exposure study. Aquatic toxicology, 155, 244-252.
50. González-Rubio, S., Vike-Jonas, K., Gonzalez, S. V., Ballesteros-Gómez, A., Sonne,
C., Dietz, R., ... & Asimakopoulos, A. G. (2020). Bioaccumulation potential of
bisphenols and benzophenone UV filters: A multiresidue approach in raptor
tissues. Science of the Total Environment, 741, 140330.
51. Ko, A., Kang, H. S., Park, J. H., Kwon, J. E., Moon, G. I., Hwang, M. S., & Hwang, I.
G. (2016). The association between urinary benzophenone concentrations and personal
care product use in Korean adults. Archives of environmental contamination and
toxicology, 70, 640-646.
52. Zhang, T., Sun, H., Qin, X., Wu, Q., Zhang, Y., Ma, J., & Kannan, K. (2013).
Benzophenone-type UV filters in urine and blood from children, adults, and pregnant
women in China: partitioning between blood and urine as well as maternal and fetal
cord blood. Science of the Total Environment, 461, 49-55.
53. Liu, X., Zhan, T., Gao, Y., Cui, S., Liu, W., Zhang, C., & Zhuang, S. (2022).
Benzophenone-1 induced aberrant proliferation and metastasis of ovarian cancer cells
via activated ERα and Wnt/β-catenin signaling pathways. Environmental Pollution, 292,
118370.
54. Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012).
Benzophenone photosensitized DNA damage. Accounts of chemical research, 45(9),
1558-1570.
55. Nedorost, S. T. (2003). Facial erythema as a result of benzophenone allergy. Journal of
the American Academy of Dermatology, 49(5), 259-261.
56. Song, S., He, Y., Huang, Y., Huang, X., Guo, Y., Zhu, H., ... & Zhang, T. (2020).
Occurrence and transfer of benzophenone-type ultraviolet filters from the pregnant
women to fetuses. Science of the total environment, 726, 138503.
57. Yao, Y. N., Wang, Y., Zhang, H., Gao, Y., Zhang, T., & Kannan, K. (2023). A review
of sources, pathways, and toxic effects of human exposure to benzophenone ultraviolet
light filters. Eco-Environment & Health.
58. Jiang, Y., Zhao, H., Xia, W., Li, Y., Liu, H., Hao, K., ... & Xu, S. (2019). Prenatal
exposure to benzophenones, parabens and triclosan and neurocognitive development at
2 years. Environment international, 126, 413-421.
59. Narla, S., & Lim, H. W. (2020). Sunscreen: FDA regulation, and environmental and
health impact. Photochemical & Photobiological Sciences, 19, 66-70.
指導教授 丁望賢(Wang-Hsien Ding) 審核日期 2024-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明