博碩士論文 111324064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.117.105.184
姓名 王睿紳(Jui-Shen Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 於表面進行最適化矽烷處理並探討不同鹽離子濃度對於矽奈米線場效電晶體檢測微核醣核酸之影響
(Optimizing surface silanization and investigating the effect of different salt ion concentrations on the detection of microRNA with silicon nanowire field-effect transistors)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 由於矽奈米線場效電晶體 (Silicon-nanowire field effect transistors, SiNW-FETs)具備高靈敏性、無須生物/螢光標記、設備成本低廉、即時檢測等優勢,近年來已被視為極具發展潛力的檢測平台。
以往, SiNW-FETs檢測核酸雜交的機制,是透過核酸雜交後表面電荷密度的改變,誘發電晶體元件通道內載子數量的變化,以此得到不同電流-電壓曲線圖(I-V curve)來當作檢測方法。以n-type FETs為例,若檢測之目標分子帶負電,其產生的電場將會排斥通道內的載子(e-),造成通道內載子密度下降從而降低源汲電流;反之,若目標分子帶正電,其產生的電場將會吸引額外的載子至通道內,造成通道內載子密度上升從而增加源汲電流。
然而,真實表面現象更為複雜且超出原本想像。根據實驗結果,緩衝液中的反離子(Counter-ion)除了會受到雙股螺旋核酸上帶負電的磷酸根所吸引外,也會因為閘極電壓施加的關係而蓄積於閘極氧化層表面上。這些反離子產生的電場會與雙股核酸所產生的電場發生競爭進而影響通道內載子可以有不同變化。
為此,本研究旨在探討表面經最適化矽烷處理後,分析不同鹽離子濃度環境對於SiNW-FETs檢測表面探針與微核醣核酸雜交後造成之電訊號影響,並嘗試找出最適合檢測核酸雜交的鹽離子濃度環境,作為產品設計之建議。首先,我們將Mixed-SAMs (silane-PEG-NH2:OH=1:3(mM/mM))與戊二醛 (Glutaraldehyde, GA)修飾於元件表面,接著透過還原胺化反應將 miR-21 去氧核醣核酸探針與戊二醛反應。待表面改質完成後,會利用光電子能譜儀與原子力顯微鏡觀察表面特徵以確保Mixed-SAMs於表面修飾之最適化條件,並確認miR-21探針成功接枝於表面。另外,為了確認雜交後使用不同鹽濃度環境對於核酸雜交穩定性與雜交量的影響,本研究利用穿透式與反射式小角度散射系統 (Grazing Incident Small-angle X-ray Scattering, GISAXS)與雙晶片(Charge Coupled Device, CCD)全自動倒立螢光顯微鏡進行觀察。從小角度散射的結果顯示,即使改變不同鹽濃度環境依然能維持雙股螺旋結構,並從螢光顯微鏡的結果得知,隨著鹽離子濃度上升,探針與目標物核酸之間的雜交量呈現上升的趨勢。最後,我們利用COB (Chip on Board)檢測系統來檢測不同鹽離子濃度環境下核酸雜交之電訊號變化。
根據檢測結果可以得知,在三種鹽濃度環境中,我們找出50 mM BTP在檢測核酸雜交能得到最大電訊號變化,並利用Liquid gate FETs之相等電路圖中,電容的概念來描述核酸雜交之複雜變化。接著,我們研究了兩種不同反離子大小的緩衝溶液1,3-雙(三(羥甲基)甲氨基)丙烷 (Bis-tris propane, BTP)和磷酸鹽緩衝生理鹽水 (Phosphate buffer saline, PBS)對於檢測核酸雜交的影響,發現到緩衝溶液中的BTP因離子半徑大小大於PBS中的鈉離子,能有效減少反離子蓄積於閘極氧化層的電荷密度從而提升電晶體元件靈敏性。最後,在最適化鹽離子濃度的環境下,我們研究了檢測不同目標物核酸的電訊號變化,並將實驗結果帶入Langmuir isotherm理論計算中,得出不同目標物核酸下的Ka值。計算結果顯示,DNA探針與目標DNA具有較大的Ka值,代表著其之間的結合親和力越大,能夠讓感測器檢測到越低濃度的DNA。
摘要(英) Due to the advantages of high sensitivity, label-free operation, low device cost, and real-time detection, silicon-nanowire field effect transistors (SiNW-FETs) have been widely considered as a highly promising detection platform in recent years.
Traditionally, the detection mechanism of SiNW-FETs for detecting nucleic acid hybridization relies on the change in surface charge density after nucleic acid hybridization, thereby inducing variations in the number of carriers within the electron channel, which are represented by different current-voltage (I-V) curves. For n-type field effect transistors, if the target molecule is negatively charged, the electric field it generates repels carriers (e-) in the channel, decreasing carrier density and reducing source-drain current, and vice versa.
However, the real surface phenomena are more complex and beyond the original assumptions. Based on experiment result, counter-ions in the buffer solution were not only drawn towards the negatively charged phosphate groups on the double-stranded nucleic acid but also drived by the gate voltage and thereby accumulated on the gate oxide surface. The electric field generated by these counter-ions competes with the electric field generated by the double-stranded nucleic acid, thereby affecting the variation of carriers within the channel.
Therefore, this study aims to investigate the effects of different salt ion concentrations on the electric fields caused by surface probe and microRNA hybridization after optimal silanization treatment on the surface, and to explore the most suitable salt ion concentration environment for nucleic acid detection as a product design recommendation. Initially, we modify the device surface with mixed self-assembled (silane-PEG-NH2:OH = 1:3 (mM/mM)) and glutaraldehyde. Then, DNA probes were reacted with glutaraldehyde through reductive amination. After surface modification, AFM and (ESCA) are used to observe surface characteristics to ensure the optimized conditions of Mixed-SAMs on the surface and the successful grafting of miR-21 probes.
Furthermore, in order to investigate the effects of different salt concentrations on the stability and amount of nucleic acid hybridization, we used (GISAXS) and IX83 Inverted Microscope for observation. Results from GISAXS demonstrate that the double-stranded helical structure remained stable despite changes in salt concentration, and fluorescence microscopy results reveal that hybridization amount between probes and target miRNA and DNA increased with higher salt concentrations.
Next, we used the Chip on Board (COB) detection system to detect changes in electrical signals during nucleic acid hybridization under different salt ion concentrations. From the COB detection results, it is observed that among the three salt ion concentration environments, 50mM Bis-tris propane (BTP) yields the most significant variation in electrical signals. Additionally, the concept of capacitance is applied to describe the complex variations in nucleic acid hybridization using the equivalent circuit of liquid gate FETs. Subsequently, we investigate the effects of two different buffer solutions with two different counter-ion sizes, 1,3-bis(tris(hydroxymethyl)methylamino)propane (BTP) and Phosphate-buffered saline (PBS), on nucleic acid hybridization detection. We found that BTP, with larger ion radii compared to the sodium ions in PBS, effectively reduced counter-ion accumulation on the gate oxide surface, enhancing the sensitivity of the transistor device.
Finally, under the optimized salt ion concentration environment, we studied the electrical signal changes in detecting different target nucleic acids. The experimental results were applied to the Langmuir isotherm theory to calculate the Ka values for different target nucleic acids. The results showed that DNA probes and target DNA had higher Ka values, indicating stronger binding affinity and allowing the sensor to detect lower concentrations of DNA.
關鍵字(中) ★ 矽奈米線場效電晶體
★ 核酸檢測
★ 最適化表面改質
★ 最佳化鹽濃度之檢測緩衝溶液
★ 得拜長度
★ 反離子效應
★ 等效電路圖
關鍵字(英) ★ SiNW-FETs
★ nucleic acid detection
★ optimized surface silanization
★ optimized sensing buffer
★ debye length
★ counter-ion effect
★ liquid gate equivalent circuit
論文目次 摘要 I
ABSTRACT IV
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XVI
第一章 緒論 1
第二章 文獻回顧 4
2.1 疾病檢測 4
2.1.1 疾病檢體 4
2.1.2 生物標誌物(Biomarker) 5
2.2 核酸介紹 6
2.2.1 核酸分子 6
2.2.2 去氧核醣核酸 7
2.2.3 核醣核酸 9
2.2.4 微小核醣核酸 10
2.3 核酸檢測 14
2.3.1 即時定量聚合酶鏈反應 14
2.3.2 北方墨點法 17
2.3.3 表面電漿共振 17
2.4 核酸檢測技術的瓶頸與轉機 19
2.5 矽奈米線場效電晶體 20
2.6 晶片表面改質 26
2.6.1 自組裝單層膜 26
2.6.2 聚乙二醇(Silane-Polyethylene glycol)於自組裝單層膜之應用 28
2.6.3 氨丙基矽環(Aminopropyl silatrane, APS)於自組裝單層膜之應用 32
2.6.4 交聯劑(Crosslinker)戊二醛 34
2.7 緩衝溶液中鹽離子濃度對於生物感測器檢測核酸之影響 36
2.7.1 鹽離子濃度對於電容之影響 36
2.7.2 鹽離子濃度對於核酸雜交之影響 38
2.7.3 核酸雜交對於電容之影響 39
2.7.4 反離子大小(Counter-ion)的影響 40
第三章 實驗藥品、儀器與方法 42
3.1 實驗架構 42
3.2 實驗藥品 44
3.3 儀器設備 46
3.4 實驗步驟 47
3.4.1 溶液配置 47
3.4.2 FETs表面改質 49
3.4.3 FET電訊號量測 52
3.4.4 原子力顯微鏡 (AFM) 表面均勻度分析 53
3.4.5 光電子能譜儀 (ESCA) 表面元素組成分析 53
3.4.6 穿透式與反射式小角度散射系統 (SAXS) 核酸適體-核酸適體雜交穩定性分析 54
3.4.7 雙晶片CCD全電動倒立螢光顯微鏡(IX83 Inverted microscope) 核酸適體-核酸適體雜交量分析 54
第四章 結果與討論 55
4.1 表面改質鑑定 55
4.1.1 原子力顯微鏡 (AFM) 55
4.1.1.1 不同固定化時間對於矽烷化反應之影響 55
4.1.1.2 不同固定化溫度對於矽烷化反應之影響 58
4.1.1.3 溶液pH值對於矽烷化反應之影響 60
4.1.2 光電子能譜儀 (ESCA) 66
4.2 不同鹽濃度下對於檢測核酸之影響 71
4.2.1 分析不同鹽濃度環境對於核酸雙股雜交之穩定性 71
4.2.2 不同鹽濃度環境對於核酸雙股之雜交量螢光分析 73
4.3 場效電晶體量測 76
4.3.1 不同鹽濃度對於場效電晶體檢測miR-21之影響 76
4.3.2 不同反離子大小 (Counter-ion Size) 緩衝溶液對於SiNW-FETs檢測miRNA雜交之電訊號變化 80
4.3.3 不同目標核酸分子之檢測結果 82
第五章 結論 86
第六章 參考文獻 88
參考文獻 1. Grölz, D., et al., Liquid biopsy preservation solutions for standardized pre-analytical workflows—venous whole blood and plasma. Current pathobiology reports, 2018. 6: p. 275-286.
2. Salvi, S., et al., The potential use of urine cell free DNA as a marker for cancer. Expert Review of Molecular Diagnostics, 2016. 16(12): p. 1283-1290.
3. Jain, S., et al., Urine-based liquid biopsy for nonurological cancers. Genetic Testing and Molecular Biomarkers, 2019. 23(4): p. 277-283.
4. Aro, K., et al., Saliva liquid biopsy for point-of-care applications. Frontiers in public health, 2017. 5: p. 77.
5. Sindeeva, O.A., et al., New frontiers in diagnosis and therapy of circulating tumor markers in cerebrospinal fluid in vitro and in vivo. Cells, 2019. 8(10): p. 1195.
6. Rolfo, C., et al., Liquid biopsy for advanced NSCLC: a consensus statement from the international association for the study of lung cancer. Journal of Thoracic Oncology, 2021. 16(10): p. 1647-1662.
7. Bica-Pop, C., et al., Overview upon miR-21 in lung cancer: focus on NSCLC. Cellular and Molecular Life Sciences, 2018. 75: p. 3539-3551.
8. Duque-Ossa, L., B. García-Ferrera, and J. Reyes-Retana, Troponin I as a biomarker for early detection of acute myocardial infarction. Current Problems in Cardiology, 2021: p. 101067.
9. Mingels, A.M., et al., Cardiac troponin T: smaller molecules in patients with end-stage renal disease than after onset of acute myocardial infarction. Clinical chemistry, 2017. 63(3): p. 683-690.
10. Dahm, R., Friedrich Miescher and the discovery of DNA. Developmental biology, 2005. 278(2): p. 274-288.
11. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-738.
12. Waters, J.T., et al., Transitions of double-stranded DNA between the A-and B-forms. The Journal of Physical Chemistry B, 2016. 120(33): p. 8449-8456.
13. Peck, L.J. and J.C. Wang, Energetics of B-to-Z transition in DNA. Proceedings of the National Academy of Sciences, 1983. 80(20): p. 6206-6210.
14. Palecek, E., Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol, 1991. 26(2): p. 151-226.
15. Drew, H., et al., High-salt d (CpGpCpG), a left-handed Z′ DNA double helix. Nature, 1980. 286(5773): p. 567-573.
16. Higgs, P.G., RNA secondary structure: physical and computational aspects. Quarterly reviews of biophysics, 2000. 33(3): p. 199-253.
17. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 2004. 116(2): p. 281-297.
18. Olsen, P.H. and V. Ambros, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Developmental biology, 1999. 216(2): p. 671-680.
19. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. nature, 2000. 403(6772): p. 901-906.
20. Vella, M.C. and F.J. Slack, C. elegans microRNAs. WormBook: The Online Review of C. elegans Biology [Internet], 2005.
21. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer research, 2004. 64(11): p. 3753-3756.
22. Lee, Y., et al., MicroRNA maturation: stepwise processing and subcellular localization. The EMBO journal, 2002. 21(17): p. 4663-4670.
23. Ketting, R.F., et al., Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & development, 2001. 15(20): p. 2654-2659.
24. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nature reviews genetics, 2004. 5(7): p. 522-531.
25. Si, W., et al., The role and mechanisms of action of microRNAs in cancer drug resistance. Clinical epigenetics, 2019. 11(1): p. 1-24.
26. Botes, M., M. de Kwaadsteniet, and T.E. Cloete, Application of quantitative PCR for the detection of microorganisms in water. Analytical and bioanalytical chemistry, 2013. 405: p. 91-108.
27. Koscianska, E., et al., Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC molecular biology, 2011. 12: p. 1-7.
28. Campbell, C.T. and G. Kim, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials, 2007. 28(15): p. 2380-2392.
29. Bardeen, J. and W.H. Brattain, The transistor, a semi-conductor triode. Physical Review, 1948. 74(2): p. 230.
30. Lee, C.-S., S.K. Kim, and M. Kim, Ion-sensitive field-effect transistor for biological sensing. Sensors, 2009. 9(9): p. 7111-7131.
31. Li, H., et al., Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. Sensors, 2023. 23(15): p. 6808.
32. Gao, A., et al., Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano letters, 2011. 11(9): p. 3974-3978.
33. Chiang, P.L., et al., Nanowire transistor‐based ultrasensitive virus detection with reversible surface functionalization. Chemistry–An Asian Journal, 2012. 7(9): p. 2073-2079.
34. Knoll, W., et al., Functional tethered lipid bilayers. Reviews in Molecular Biotechnology, 2000. 74(3): p. 137-158.
35. Chang, R., et al., Water near bioinert self-assembled monolayers. Polymer Journal, 2018. 50(8): p. 563-571.
36. Lecot, S., et al., Arrangement of monofunctional silane molecules on silica surfaces: influence of alkyl chain length, head-group charge, and surface coverage, from molecular dynamics simulations, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The Journal of Physical Chemistry C, 2020. 124(37): p. 20125-20134.
37. Kind, M. and C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
38. Capecchi, G., et al., Adsorption of CH 3 COOH on TiO 2: IR and theoretical investigations. Research on Chemical Intermediates, 2007. 33: p. 269-284.
39. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
40. Wang, G.M., W.C. Sandberg, and S.D. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819.
41. Anderson, D. and M. Moskovits, A SERS-active system based on silver nanoparticles tethered to a deposited silver film. The Journal of Physical Chemistry B, 2006. 110(28): p. 13722-13727.
42. Zürcher, S., et al., Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. Journal of the American Chemical Society, 2006. 128(4): p. 1064-1065.
43. Bath, B.D., et al., Dopamine adsorption at surface modified carbon-fiber electrodes. Langmuir, 2001. 17(22): p. 7032-7039.
44. Huang, C.-J., Advanced surface modification technologies for biosensors, in Chemical, gas, and biosensors for internet of things and related applications. 2019, Elsevier. p. 65-86.
45. Ratner, B.D., New ideas in biomaterials science—a path to engineered biomaterials. Journal of biomedical materials research, 1993. 27(7): p. 837-850.
46. Carrara, S., et al., New insights for using self-assembly materials to improve the detection stability in label-free DNA-chip and immuno-sensors. Biosensors and Bioelectronics, 2009. 24(12): p. 3425-3429.
47. Carrara, S., et al., Capacitance DNA bio-chips improved by new probe immobilization strategies. Microelectronics Journal, 2010. 41(11): p. 711-717.
48. Vu, C.-A., et al., Improved biomarker quantification of silicon nanowire field-effect transistor immunosensors with signal enhancement by RNA aptamer: Amyloid beta as a case study. Sensors and Actuators B: Chemical, 2021. 329: p. 129150.
49. Huang, C.-J. and Y.-Y. Zheng, Controlled silanization using functional silatrane for thin and homogeneous antifouling coatings. Langmuir, 2018. 35(5): p. 1662-1671.
50. Tseng, Y.-T., et al., Facile functionalization of polymer surfaces in aqueous and polar organic solvents via 3-mercaptopropylsilatrane. ACS applied materials & interfaces, 2016. 8(49): p. 34159-34169.
51. Lee, T.-J., L.-K. Chau, and C.-J. Huang, Controlled Silanization: High Molecular Regularity of Functional Thiol Groups on Siloxane Coatings. Langmuir, 2020. 36(21): p. 5935-5943.
52. Xiao, Z., et al., Effect of glutaraldehyde on water related properties of solid wood. 2010.
53. Khademi, M. and D.P. Barz, Structure of the electrical double layer revisited: Electrode capacitance in aqueous solutions. Langmuir, 2020. 36(16): p. 4250-4260.
54. Wang, H. and L. Pilon, Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochimica Acta, 2012. 64: p. 130-139.
55. Xu, X., et al., Estimating detection limits of potentiometric DNA sensors using surface plasmon resonance analyses. ACS sensors, 2019. 5(1): p. 217-224.
56. Wei, F., et al., Monitoring DNA hybridization on alkyl modified silicon surface through capacitance measurement. Biosensors and Bioelectronics, 2003. 18(9): p. 1157-1163.
57. Parizi, K.B., et al., ISFET pH sensitivity: counter-ions play a key role. Scientific reports, 2017. 7(1): p. 41305.
58. Mehne, J., et al., Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Analytical and bioanalytical chemistry, 2008. 391: p. 1783-1791.
59. Luo, Y.-R. and J.A. Kerr, Bond dissociation energies. CRC handbook of chemistry and physics, 2012. 89(89): p. 65-98.
60. Issa, A.A. and A.S. Luyt, Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review. Polymers, 2019. 11(3): p. 537.
61. P Chiriac, A., et al., Sol gel method performed for biomedical products implementation. Mini reviews in medicinal chemistry, 2010. 10(11): p. 990-1013.
62. Li, J., R. Peng, and D. Li, Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels. Analytica Chimica Acta, 2019. 1059: p. 68-79.
63. Zhou, J.C., et al., Immobilization-mediated reduction in melting temperatures of DNA–DNA and DNA–RNA hybrids: Immobilized DNA probe hybridization studied by SPR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 481: p. 72-79
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2024-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明