博碩士論文 111324075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.225.149.95
姓名 李佳軒(Chia-Hsuan Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電場輔助矽奈米線場效電晶體用於超低濃度核酸檢測之研究
(Electric-field Assisted Silicon Nanowire Field Effect Transistor for the Ultra-low Concentration Nucleic Acid Detection)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 低濃度核酸檢測已廣泛應用於疾病的診斷及治療後,藉此改善病人之治療方式與進程,而最常用於核酸檢測的方式為即時檢測聚合酶反應及微陣列基因序列,但其成本較高且相對耗時。少數研究已經開始採用矽奈米線場效電晶體元件,因其具有高靈敏性、即時檢測和體積小且操作等優勢,因此被視為具有淺力的核酸檢測平台,甚至作為定點照護檢驗(POCT)工具。
雖然場校電晶體具有即時檢測樣品的優勢,仍需要考量核酸擴散至檢測表面的反應時間。以往一般利用場校電晶體檢測核酸的研究中,核酸在擴散與反應的過程中並未受到額外電場的影響下,目標核酸(Target oligonucleotide)於擴散中主要受到溶液流體流動的convection以及Brownian diffusion的影響。當目標物進一步逐漸移動至探針表面進行結合時,過程中擴散所需要花費的時間,比目標核酸與核酸探針雜交結合反應的時間長,尤其在樣品中核酸濃度很低時。所以若要縮短目標核酸與探針雜交的反應平衡達到檢測時間縮短,加速核酸主要速率限制步驟的擴散反應速率將會是主導整體核酸檢測時間的關鍵。
本研究利用多晶矽奈米線場效應電晶體(poly-SiNW FET)作為生物感測器,以oligonucleotide為探針來辨識具有互補性的目標DNA,於liquid gate施加負電壓於反應槽,形成電場驅動核酸加速至表面,以期待縮短核酸擴散至探針表面的時間。研究探討調整不同閘極負電壓、注射流速及探針固定化接枝時間等,期望找出合適之電場參數作為加速FETs應用於核酸檢測時間之條件。
研究首先以X射線光電子能譜儀(XPS)、原子力顯微鏡(AFM) 探針已成功改植於晶片上。利用FET結合調整閘極電壓、注射流速,發現在低注射流速下,以及–1 V產生的電場效應下目標DNA能穩定擴散,將反應平衡時間從約60分鐘縮短至20分鐘。接著改變探針固定化時間,以有助於提高表面固定化量,並透過FET施加電場後目標DNA與探針碰撞機率增加,其訊號差異性有顯著提升,在不同檢測濃度下街保有優越性能,反應時間仍可與未施加電壓提早10 分鐘達到檢測終點。
以上研究為首次於場效電晶體檢測加入設備中探討外加電場對檢測時間加速的結果,成功的結果可以看見外加電場於奈米場效應電晶體於檢測低濃度核酸的潛力。
摘要(英) Ultra-low concentration nucleic acid detection has been widely applied in the diagnosis and treatment of diseases to improve patient treatment strategies and outcomes. Real-time polymerase chain reaction (PCR) and next-generation gene sequencing are the most common methods for nucleic acid detection, while their high cost and relatively lengthy processing times present challenges. Some studies have started to adopt silicon nanowire field-effect transistor (SiNW FET) devices due to their high sensitivity, real-time detection, small size, and ease of operation. Therefore, the SiNW FET devices are promising platforms for nucleic acid detection, including the potential use as Point-of-Care Testing (POCT) equipment.
Despite the advantages of real-time sample detection offered by FETs, the reaction time for nucleic acid diffusion to the detection surface remains a critical consideration. In previous studies using SiNW FETs for nucleic acid detection, the diffusion and reaction of the target oligonucleotide were primarily influenced by fluid flow convection and Brownian diffusion without the additional influence of an external force field, such as an electric field. As the target molecule gradually moves towards the probe surface for binding, the time required for diffusion becomes a limiting factor, especially when nucleic acid concentrations in the sample are low. Therefore, speeding up nucleic acid detection lies in accelerating the diffusion reaction rate of the primary rate-limiting step during the hybridization of target nucleic acids with probes.
This study used polycrystalline silicon nanowire field effect transistors (poly-SiNW FET) as biosensors, with oligonucleotides as probes to recognize complementary target DNA. A negative voltage was applied to the liquid gate used for detection to create an electric field that drives nucleic acids to the surface. This attempt to shorten the diffusion from nucleic acids to the probe surface. The research involved adjusting the gate voltages, injection flow rates, and probe immobilization times to find suitable electric field parameters for accelerating FETs in nucleic acid detection.
X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) confirm the successful immobilization of probes on the chip. By combining FET with adjusted gate voltage and injection flow rate, it was found that at a low injection flow rate and a -1 V electric field, the target DNA can stably diffuse, reducing the equilibrium time from approximately 60 minutes to 20 minutes. Further changes in probe immobilization time enhance surface immobilization, and applying an electric field via FET increases the collision probability between target DNA and probes. The signal differences significantly improve, maintaining superior performance at different detection concentrations, and the reaction time still achieves the detection endpoint 10 minutes earlier than without applying voltage.
This study first explores the results of applying an external electric field to accelerate detection time in field-effect transistors. The successful outcomes highlight the potential of an external electric field in accelerating the detection of low-concentration nucleic acids in nanowire field-effect transistors.
關鍵字(中) ★ 場效電晶體生物感測器
★ 電場效應
★ 液態閘極
★ 核酸
★ 縮短檢測時間
關鍵字(英) ★ field-effect transistor biosensor
★ electric field effect
★ liquid gate
★ nucleic acid
★ shorten detection time
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xv
第一章 緒論 1
第二章 文獻探討 5
2-1 核酸檢測 5
2-1-1 核酸(Nucleic acid) 6
2-1-2 生物檢測器量測核酸之發展 11
2-1-3 核酸檢測技術瓶頸與轉機 16
2-2 場效電晶體 18
2-2-1 矽奈米線場效電晶體原理及應用 18
2-2-2 場效電晶體之樣品檢體到結果報告問題 23
2-3 施加外部閘極電壓之電場效應 28
2-3-1 電場效應原理及應用 28
2-3-2 核酸於電場效應之應用 38
2-4 晶片表面化學改質 42
2-4-1 聚乙二醇(Polyethylene glycol, PEG)於晶片表面抗汙能力 42
2-4-2 自組裝單層膜 46
2-4-3 表面分子固定化 49
第三章 實驗藥品、儀器與方法 53
3-1 實驗藥品 53
3-2 儀器設備 55
3-3 溶液配置 56
3-4 晶片表面改質 57
3-4-1 晶片表面清洗與氧電漿處理 59
3-4-2 修飾 Mixed self-assembled monolayers(Mixed-SAMs) 60
3-4-3 修飾戊二醛(Glutaraldehyde, GA) 61
3-4-4 單股Oligonucleotide探針固定化 62
3-4-5 表面殘基封阻(Blocking) 63
3-5 FETs 電訊號量測 64
3-5-1 檢測裝置 64
3-5-2 Liquid-gate電壓施加於目標物檢測 65
3-5-3 FET電訊號數據分析 67
3-6 表面改質鑑定 69
3-6-1 矽控片改質 69
3-6-2 原子力顯微鏡(AFM)表面粗糙度分析 70
3-6-3 光電子能譜儀(XPS)表面元素分析 71
3-7 螢光修飾核酸之表面固定化與雜交分析 72
3-7-1 Cyanine 3 染劑之探針核酸固定化 72
3-7-2 Cyanine 3 染劑之目標核酸雜交 74
第四章 結果與討論 75
4-1 表面改質之鑑定 75
4-1-1 光電子能譜儀(XPS)表面元素分析 75
4-1-2 原子力顯微鏡(AFM)表面粗糙度分析 79
4-2 不同施加閘極電壓比較 82
4-3 在固定反應槽體積下體積流速對DNA雜交的影響 85
4-4 有無施加電壓對不同探針接枝時間之影響 91
4-4-1 FET檢測與不同探針接枝時間比較 91
4-4-2 Cyanine 3 螢光性質對於探針固定化之比較 95
4-5 不同目標物濃度對於有無施加電壓之影響 99
第五章 結論 102
第六章 未來展望 103
參考文獻 104
附錄 114
參考文獻 [1] Xu, S.; Zhan, J.; Man, B.; Jiang, S.; Yue, W.; Gao, S.; Guo, C.; Liu, H.; Li, Z.; Wang, J. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nature communications 2017, 8 (1), 14902.
[2] Purwidyantri, A.; Domingues, T.; Borme, J.; Guerreiro, J. R.; Ipatov, A.; Abreu, C. M.; Martins, M.; Alpuim, P.; Prado, M. Influence of the electrolyte salt concentration on DNA detection with graphene transistors. Biosensors 2021, 11 (1), 24.
[3] Cheung, K. M.; Abendroth, J. M.; Nakatsuka, N.; Zhu, B.; Yang, Y.; Andrews, A. M.; Weiss, P. S. Detecting DNA and RNA and differentiating single-nucleotide variations via field-effect transistors. Nano letters 2020, 20 (8), 5982-5990.
[4] Cholko, T.; Chang, C.-e. A. Modeling effects of surface properties and probe density for nanoscale biosensor design: a case study of dna hybridization near surfaces. The Journal of Physical Chemistry B 2021, 125 (7), 1746-1754.
[5] Abe, S.; Thurner, S. Anomalous diffusion in view of Einstein′s 1905 theory of Brownian motion. Physica A: Statistical Mechanics and its Applications 2005, 356 (2-4), 403-407.
[6] Luo, X.; Deng, S.; Wang, P. Temporal–spatial-resolved mapping of the electrical double layer changes by surface plasmon resonance imaging. RSC advances 2018, 8 (50), 28266-28274.
[7] Chu, C.-J.; Yeh, C.-S.; Liao, C.-K.; Tsai, L.-C.; Huang, C.-M.; Lin, H.-Y.; Shyue, J.-J.; Chen, Y.-T.; Chen, C.-D. Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano letters 2013, 13 (6), 2564-2569.
[8] Hao, Z.; Pan, Y.; Huang, C.; Wang, Z.; Lin, Q.; Zhao, X.; Liu, S. Modulating the linker immobilization density on aptameric graphene field effect transistors using an electric field. ACS sensors 2020, 5 (8), 2503-2513.
[9] Khan, N. I.; Song, E. Detection of an il-6 biomarker using a gfet platform developed with a facile organic solvent-free aptamer immobilization approach. Sensors 2021, 21 (4), 1335.
[10] Yang, X.; Wang, Q.; Wang, K.; Tan, W.; Yao, J.; Li, H. Electrical switching of DNA monolayers investigated by surface plasmon resonance. Langmuir 2006, 22 (13), 5654-5659.
[11] Emaminejad, S.; Javanmard, M.; Gupta, C.; Chang, S.; Davis, R. W.; Howe, R. T. Tunable control of antibody immobilization using electric field. Proceedings of the National Academy of Sciences 2015, 112 (7), 1995-1999.
[12] Kyaw, H. H.; Boonruang, S.; Mohammed, W. S.; Dutta, J. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water. AIP Advances 2015, 5 (10), 107226.
[13] Kim, J. H.-S.; Marafie, A.; Jia, X.-Y.; Zoval, J. V.; Madou, M. J. Characterization of DNA hybridization kinetics in a microfluidic flow channel. Sensors and Actuators B: Chemical 2006, 113 (1), 281-289.
[14] Zhou, W.; Feng, M.; Valadez, A.; Li, X. One-step surface modification to graft DNA codes on paper: the method, mechanism, and its application. Analytical Chemistry 2020, 92 (10), 7045-7053.
[15] Peterson, A. W.; Heaton, R. J.; Georgiadis, R. M. The effect of surface probe density on DNA hybridization. Nucleic acids research 2001, 29 (24), 5163-5168.
[16] Das, S.; Devireddy, R.; Gartia, M. R. Surface plasmon resonance (SPR) sensor for cancer biomarker detection. Biosensors 2023, 13 (3), 396.
[17] Dahm, R. Friedrich Miescher and the discovery of DNA. Developmental biology 2005, 278 (2), 274-288.
[18] Watson, J. D.; Crick, F. H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953, 171 (4356), 737-738.
[19] Tinoco, I. Nucleic acid structures, energetics, and dynamics. The Journal of Physical Chemistry 1996, 100 (31), 13311-13322.
[20] Wing, R.; Drew, H.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R. E. Crystal structure analysis of a complete turn of B-DNA. Nature 1980, 287 (5784), 755-758.
[21] Krall, J. B.; Nichols, P. J.; Henen, M. A.; Vicens, Q.; Vögeli, B. Structure and Formation of Z-DNA and Z-RNA. Molecules 2023, 28 (2), 843.
[22] Rich, A.; Nordheim, A.; Wang, A. H.-J. The chemistry and biology of left-handed Z-DNA. Annual review of biochemistry 1984, 53 (1), 791-846.
[23] Neidle, S. Beyond the double helix: DNA structural diversity and the PDB. Journal of Biological Chemistry 2021, 296.
[24] Wang, D.; Farhana, A. Biochemistry, RNA Structure. 2020.
[25] Ebel, S.; Brown, T.; Lane, A. N. Thermodynamic stability and solution conformation of tandem G· A mismatches in RNA and RNA· DNA hybrid duplexes. European journal of biochemistry 1994, 220 (3), 703-715.
[26] Zhang, K.; Hodge, J.; Chatterjee, A.; Moon, T. S.; Parker, K. M. Duplex structure of double-stranded RNA provides stability against hydrolysis relative to single-stranded RNA. Environmental Science & Technology 2021, 55 (12), 8045-8053.
[27] Georgakopoulos-Soares, I.; Parada, G. E.; Hemberg, M. Secondary structures in RNA synthesis, splicing and translation. Computational and Structural Biotechnology Journal 2022, 20, 2871-2884.
[28] Collins, F. S.; Patrinos, A.; Jordan, E.; Chakravarti, A.; Gesteland, R.; Walters, L.; DOE, m. o. t.; groups, N. p. New goals for the US human genome project: 1998-2003. science 1998, 282 (5389), 682-689.
[29] Hammond, S. M.; Aartsma‐Rus, A.; Alves, S.; Borgos, S. E.; Buijsen, R. A.; Collin, R. W.; Covello, G.; Denti, M. A.; Desviat, L. R.; Echevarría, L. Delivery of oligonucleotide‐based therapeutics: challenges and opportunities. EMBO Molecular Medicine 2021, 13 (4), e13243.
[30] Mackay, I. M.; Arden, K. E.; Nitsche, A. Real-time PCR in virology. Nucleic acids research 2002, 30 (6), 1292-1305.
[31] Marmiroli, N.; Maestri, E. Polymerase chain reaction (PCR). In Food toxicants analysis, Elsevier, 2007; pp 147-187.
[32] Dragan, A.; Pavlovic, R.; McGivney, J.; Casas-Finet, J.; Bishop, E.; Strouse, R.; Schenerman, M.; Geddes, C. SYBR Green I: fluorescence properties and interaction with DNA. Journal of fluorescence 2012, 22, 1189-1199.
[33] Cao, Y.; Yu, M.; Dong, G.; Chen, B.; Zhang, B. Digital PCR as an emerging tool for monitoring of microbial biodegradation. Molecules 2020, 25 (3), 706.
[34] Cooper Jr, J.; Mintz, B.; Palumbo, S.; Li, W. Assays for determining cell differentiation in biomaterials. In Characterization of Biomaterials, Elsevier, 2013; pp 101-137.
[35] Tetyana, P.; Shumbula, P. M.; Njengele-Tetyana, Z. Biosensors: design, development and applications. In Nanopores, IntechOpen, 2021.
[36] Okahata, Y.; Kawase, M.; Niikura, K.; Ohtake, F.; Furusawa, H.; Ebara, Y. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Analytical chemistry 1998, 70 (7), 1288-1296.
[37] Forinová, M.; Pilipenco, A.; Vísová, I.; Lynn Jr, N. S.; Dostálek, J.; Masková, H.; Honig, V.; Palus, M.; Selinger, M.; Kocová, P. Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS applied materials & interfaces 2021, 13 (50), 60612-60624.
[38] Steglich, P.; Lecci, G.; Mai, A. Surface plasmon resonance (SPR) spectroscopy and photonic integrated circuit (PIC) biosensors: A comparative review. Sensors 2022, 22 (8), 2901.
[39] Nguyen, H. H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 2015, 15 (5), 10481-10510.
[40] Touahir, L.; Galopin, E.; Boukherroub, R.; Gouget-Laemmel, A. C.; Chazalviel, J.-N.; Ozanam, F.; Szunerits, S. Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization. Biosensors and Bioelectronics 2010, 25 (12), 2579-2585.
[41] Mascini, M.; Tombelli, S. Biosensors for biomarkers in medical diagnostics. Biomarkers 2008, 13 (7-8), 637-657.
[42] Larkins, M. C.; Thombare, A. Point-of-Care Testing. In StatPearls [Internet], StatPearls Publishing, 2023.
[43] Rodriguez-Manzano, J.; Malpartida-Cardenas, K.; Moser, N.; Pennisi, I.; Cavuto, M.; Miglietta, L.; Moniri, A.; Penn, R.; Satta, G.; Randell, P. Handheld point-of-care system for rapid detection of SARS-CoV-2 extracted RNA in under 20 min. ACS central science 2021, 7 (2), 307-317.
[44] Srinivasan, B.; Tung, S. Development and applications of portable biosensors. Journal of laboratory automation 2015, 20 (4), 365-389.
[45] Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279 (5348), 208-211.
[46] Cui, Y.; Duan, X.; Hu, J.; Lieber, C. M. Doping and electrical transport in silicon nanowires. The journal of physical chemistry B 2000, 104 (22), 5213-5216.
[47] Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. science 2001, 293 (5533), 1289-1292.
[48] Lee, C.-S.; Kim, S. K.; Kim, M. Ion-sensitive field-effect transistor for biological sensing. Sensors 2009, 9 (9), 7111-7131.
[49] Atalla, M. M.; Tannenbaum, E.; Scheibner, E. Stabilization of silicon surfaces by thermally grown oxides. Bell System Technical Journal 1959, 38 (3), 749-783.
[50] Shen, M.-Y.; Li, B.-R.; Li, Y.-K. Silicon nanowire field-effect-transistor based biosensors: From sensitive to ultra-sensitive. Biosensors and Bioelectronics 2014, 60, 101-111.
[51] Gao, N.; Zhou, W.; Jiang, X.; Hong, G.; Fu, T.-M.; Lieber, C. M. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano letters 2015, 15 (3), 2143-2148.
[52] Kaisti, M.; Kerko, A.; Aarikka, E.; Saviranta, P.; Boeva, Z.; Soukka, T.; Lehmusvuori, A. Real-time wash-free detection of unlabeled PNA-DNA hybridization using discrete FET sensor. Scientific Reports 2017, 7 (1), 1-8.
[53] Falina, S.; Syamsul, M.; Rhaffor, N. A.; Sal Hamid, S.; Mohamed Zain, K. A.; Abd Manaf, A.; Kawarada, H. Ten years progress of electrical detection of heavy metal ions (hmis) using various field-effect transistor (fet) nanosensors: A review. Biosensors 2021, 11 (12), 478.
[54] Li, Z.; Chen, Y.; Li, X.; Kamins, T.; Nauka, K.; Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires. nano letters 2004, 4 (2), 245-247.
[55] Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M. J. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators B: Chemical 2005, 111, 470-480.
[56] Lin, H.-Y. Counterion effects impact on microRNA detection by silicon nanowire field-effect transistors. MS Thesis, National Central University, Taoyuan, Taiwan, 2022.
[57] Yang, W.-W. Aptamer Sandwich Assay for an Ultra-high Sensitivity Detection of Cardiac Troponin I by Silicon Nanowire Field-effect Transistor. MS Thesis, National Central University, Taoyuan, Taiwan, 2023.
[58] Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano 2020, 14 (4), 5135-5142.
[59] Li, J.; Wu, D.; Yu, Y.; Li, T.; Li, K.; Xiao, M.-M.; Li, Y.; Zhang, Z.-Y.; Zhang, G.-J. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosensors and Bioelectronics 2021, 183, 113206.
[60] Jo, H.; Her, J.; Lee, H.; Shim, Y.-B.; Ban, C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta 2017, 165, 442-448.
[61] Schuck, A.; Kim, H. E.; Jung, K.-M.; Hasenkamp, W.; Kim, Y.-S. Monitoring the hemostasis process through the electrical characteristics of a graphene-based field-effect transistor. Biosensors and Bioelectronics 2020, 157, 112167.
[62] Hahm, J.-i.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano letters 2004, 4 (1), 51-54.
[63] Lu, N.; Gao, A.; Dai, P.; Song, S.; Fan, C.; Wang, Y.; Li, T. CMOS‐compatible silicon nanowire field‐effect transistors for ultrasensitive and label‐free microRNAs sensing. small 2014, 10 (10), 2022-2028.
[64] Li, H.; Li, D.; Chen, H.; Yue, X.; Fan, K.; Dong, L.; Wang, G. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. Sensors 2023, 23 (15), 6808.
[65] Chen, W.-Y.; Chen, H.-C.; Yang, Y.-S.; Huang, C.-J.; Chan, H. W.-H.; Hu, W.-P. Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosensors and Bioelectronics 2013, 41, 795-801.
[66] Zhou, J. C.; Feller, B.; Hinsberg, B.; Sethi, G.; Feldstein, P.; Hihath, J.; Seker, E.; Marco, M.; Knoesen, A.; Miller, R. Immobilization-mediated reduction in melting temperatures of DNA–DNA and DNA–RNA hybrids: Immobilized DNA probe hybridization studied by SPR. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 481, 72-79.
[67] An, N.; Li, K.; Zhang, Y.; Wen, T.; Liu, W.; Liu, G.; Li, L.; Jin, W. A multiplex and regenerable surface plasmon resonance (MR-SPR) biosensor for DNA detection of genetically modified organisms. Talanta 2021, 231, 122361.
[68] Assaad, R.; Krafft, C. The Egyptian labor market in an era of revolution; OUP Oxford, 2015.
[69] Madou, M. J. Fundamentals of microfabrication: the science of miniaturization; CRC press, 2002.
[70] Van Krevelen, D.; Te Nijenhuis, K. Properties determining mass transfer in polymeric systems. Property of polymers. 4th ed. Amsterdam, The Netherlands: Elsevier 2009, 660.
[71] Reineck, P.; Wienken, C. J.; Braun, D. Thermophoresis of single stranded DNA. Electrophoresis 2010, 31 (2), 279-286.
[72] Nkodo, A. E.; Garnier, J. M.; Tinland, B.; Ren, H.; Desruisseaux, C.; McCormick, L. C.; Drouin, G.; Slater, G. W. Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 2001, 22 (12), 2424-2432.
[73] Schmitt, R. Electromagnetics explained: a handbook for wireless/RF, EMC, and high-speed electronics; Newnes, 2002.
[74] Voldman, J. Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 2006, 8, 425-454.
[75] Roche, J. Introducing electric fields. Physics Education 2016, 51 (5), 055005.
[76] Chu, C.-H.; Sarangadharan, I.; Regmi, A.; Chen, Y.-W.; Hsu, C.-P.; Chang, W.-H.; Lee, G.-Y.; Chyi, J.-I.; Chen, C.-C.; Shiesh, S.-C. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Scientific reports 2017, 7 (1), 5256.
[77] Chen, Y.-T.; Sarangadharan, I.; Sukesan, R.; Hseih, C.-Y.; Lee, G.-Y.; Chyi, J.-I.; Wang, Y.-L. High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity. Scientific reports 2018, 8 (1), 8300.
[78] Parizi, K. B.; Xu, X.; Pal, A.; Hu, X.; Wong, H. P. ISFET pH sensitivity: counter-ions play a key role. Scientific reports 2017, 7 (1), 41305.
[79] Shah, A. A.; Kang, H.; Kohlstedt, K. L.; Ahn, K. H.; Glotzer, S. C.; Monroe, C. W.; Solomon, M. J. Liquid crystal order in colloidal suspensions of spheroidal particles by direct current electric field assembly. Small 2012, 8 (10), 1551-1562.
[80] Kaziz, S.; Saad, Y.; Bouzid, M.; Selmi, M.; Belmabrouk, H. Enhancement of COVID-19 detection time by means of electrothermal force. Microfluidics and Nanofluidics 2021, 25, 1-12.
[81] Yeh, I.-C.; Hummer, G. Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations. Biophysical journal 2004, 86 (2), 681-689.
[82] Wang, H.; Tang, Z.; Li, Z.; Wang, E. Self-assembled monolayer of ssDNA on Au (1 1 1) substrate. Surface science 2001, 480 (1-2), L389-L394.
[83] Hantz, E.; Larue, V.; Ladam, P.; Le Moyec, L.; Gouyette, C.; Dinh, T. H. Solution conformation of an RNA–DNA hybrid duplex containing a pyrimidine RNA strand and a purine DNA strand. International journal of biological macromolecules 2001, 28 (4), 273-284.
[84] Michel, W.; Mai, T.; Naiser, T.; Ott, A. Optical study of DNA surface hybridization reveals DNA surface density as a key parameter for microarray hybridization kinetics. Biophysical journal 2007, 92 (3), 999-1004.
[85] Munir, A.; Waseem, H.; Williams, M. R.; Stedtfeld, R. D.; Gulari, E.; Tiedje, J. M.; Hashsham, S. A. Modeling hybridization kinetics of gene probes in a DNA biochip using FEMLAB. Microarrays 2017, 6 (2), 9.
[86] Bongrand, P. Specific and nonspecific interactions in cell biology. Journal of dispersion science and technology 1998, 19 (6-7), 963-978.
[87] Lichtenberg, J. Y.; Ling, Y.; Kim, S. Non-specific adsorption reduction methods in biosensing. Sensors 2019, 19 (11), 2488.
[88] Liu, N.; Xu, Z.; Morrin, A.; Luo, X. Low fouling strategies for electrochemical biosensors targeting disease biomarkers. Analytical Methods 2019, 11 (6), 702-711.
[89] Soler, M.; Lechuga, L. M. Biochemistry strategies for label-free optical sensor biofunctionalization: Advances towards real applicability. Analytical and bioanalytical chemistry 2022, 1-15.
[90] Li, K.; Qi, Y.; Zhou, Y.; Sun, X.; Zhang, Z. Microstructure and properties of poly (ethylene glycol)-segmented polyurethane antifouling coatings after immersion in seawater. Polymers 2021, 13 (4), 573.
[91] Sharma, S.; Johnson, R. W.; Desai, T. A. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosensors and Bioelectronics 2004, 20 (2), 227-239.
[92] Ren, C.-l.; Schlapak, R.; Hager, R.; Szleifer, I.; Howorka, S. Molecular and thermodynamic factors explain the passivation properties of poly (ethylene glycol)-coated substrate surfaces against fluorophore-labeled DNA oligonucleotides. Langmuir 2015, 31 (42), 11491-11501.
[93] Turchanin, A.; Gölzhäuser, A. Carbon nanomembranes from self-assembled monolayers: Functional surfaces without bulk. Progress in Surface Science 2012, 87 (5-8), 108-162.
[94] Rush, M. N.; Coombs, K. E.; Hedberg-Dirk, E. L. Surface chemistry regulates valvular interstitial cell differentiation in vitro. Acta biomaterialia 2015, 28, 76-85.
[95] Howarter, J. A.; Youngblood, J. P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 2006, 22 (26), 11142-11147.
[96] Capecchi, G.; Faga, M. G.; Martra, G.; Coluccia, S.; Iozzi, M. F.; Cossi, M. Adsorption of CH 3 COOH on TiO 2: IR and theoretical investigations. Research on Chemical Intermediates 2007, 33, 269-284.
[97] Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 2005, 105 (4), 1103-1170.
[98] Wang, G. M.; Sandberg, W. C.; Kenny, S. D. Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology 2006, 17 (19), 4819.
[99] Hynninen, V.; Vuori, L.; Hannula, M.; Tapio, K.; Lahtonen, K.; Isoniemi, T.; Lehtonen, E.; Hirsimäki, M.; Toppari, J. J.; Valden, M. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology. Scientific Reports 2016, 6 (1), 29324.
[100] Vu, C.-A.; Chen, W.-Y.; Yang, Y.-S.; Chan, H. W.-H. Improved biomarker quantification of silicon nanowire field-effect transistor immunosensors with signal enhancement by RNA aptamer: Amyloid beta as a case study. Sensors and Actuators B: Chemical 2021, 329, 129150.
[101] Rashid, J. I. A.; Yusof, N. A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sensing and bio-sensing research 2017, 16, 19-31.
[102] Kim, H. H.; Jeon, H. J.; Cho, H. K.; Cheong, J. H.; Moon, H. S.; Go, J. S. Highly sensitive microcantilever biosensors with enhanced sensitivity for detection of human papilloma virus infection. Sensors and Actuators B: Chemical 2015, 221, 1372-1383.
[103] Wu, C.-C.; Manga, Y. B.; Yang, M.-H.; Chien, Z.-S.; Lee, K.-S. Label-Free Detection of BRAFV599E Gene Mutation Using Side-Gated Nanowire Field Effect Transistors. Journal of The Electrochemical Society 2018, 165 (13), B576.
[104] Esmail, A.; Pereira, J. R.; Zoio, P.; Silvestre, S.; Menda, U. D.; Sevrin, C.; Grandfils, C.; Fortunato, E.; Reis, M. A.; Henriques, C. Oxygen plasma treated-electrospun polyhydroxyalkanoate scaffolds for hydrophilicity improvement and cell adhesion. Polymers 2021, 13 (7), 1056.
[105] Uhrovčík, J. Strategy for determination of LOD and LOQ values–Some basic aspects. Talanta 2014, 119, 178-180.
[106] Miller, J.; Miller, J. C. Statistics and chemometrics for analytical chemistry; Pearson education, 2018.
[107] Einav, S.; O′Connor, M. p-values and significance: The null hypothesis that they are not related is correct. Journal of critical care 2019, 54, 159-162.
[108] Nahm, F. S. What the P values really tell us. The Korean journal of pain 2017, 30 (4), 241-242.
[109] Hu, W.-P.; Wu, Y.-M.; Vu, C.-A.; Chen, W.-Y. Ultrasensitive Detection of Interleukin 6 by Using Silicon Nanowire Field-Effect Transistors. Sensors 2023, 23 (2), 625.
[110] Mujumdar, R. B.; Ernst, L. A.; Mujumdar, S. R.; Lewis, C. J.; Waggoner, A. S. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate chemistry 1993, 4 (2), 105-111.
[111] Rashid, F.; Raducanu, V.-S.; Zaher, M. S.; Tehseen, M.; Habuchi, S.; Hamdan, S. M. Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation. Nature communications 2019, 10 (1), 2104.
[112] Bartl, J. D.; Gremmo, S.; Stutzmann, M.; Tornow, M.; Cattani-Scholz, A. Modification of silicon nitride with oligo (ethylene glycol)-terminated organophosphonate monolayers. Surface Science 2020, 697, 121599.
[113] Nikonov, A.; Naumova, O.; Generalov, V.; Safatov, A.; Fomin, B. Surface Preparation as a Step in the Fabrication of Biosensors Based on Silicon Nanowire Field-Effect Transistors. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 2020, 14, 337-346.
[114] Sharma, S.; Popat, K. C.; Desai, T. A. Controlling nonspecific protein interactions in silicon biomicrosystems with nanostructured poly (ethylene glycol) films. Langmuir 2002, 18 (23), 8728-8731.
[115] Salem, M.; Mauguen, Y.; Prangé, T. Revisiting glutaraldehyde cross-linking: the case of the Arg–Lys intermolecular doublet. Acta Crystallographica Section F: Structural Biology and Crystallization Communications 2010, 66 (3), 225-228.
[116] Liubysh, O.; Vlasiuk, A.; Perepelytsya, S. Structuring of counterions around DNA double helix: a molecular dynamics study. arXiv preprint arXiv:1503.05334 2015.
[117] Matbaechi Ettehad, H.; Yadav, R. K.; Guha, S.; Wenger, C. Towards CMOS integrated microfluidics using dielectrophoretic immobilization. Biosensors 2019, 9 (2), 77.
[118] Peterson, E. M.; Manhart, M. W.; Harris, J. M. Single-molecule fluorescence imaging of interfacial DNA hybridization kinetics at selective capture surfaces. Analytical chemistry 2016, 88 (2), 1345-1354.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2024-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明