參考文獻 |
[1] Xu, S.; Zhan, J.; Man, B.; Jiang, S.; Yue, W.; Gao, S.; Guo, C.; Liu, H.; Li, Z.; Wang, J. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nature communications 2017, 8 (1), 14902.
[2] Purwidyantri, A.; Domingues, T.; Borme, J.; Guerreiro, J. R.; Ipatov, A.; Abreu, C. M.; Martins, M.; Alpuim, P.; Prado, M. Influence of the electrolyte salt concentration on DNA detection with graphene transistors. Biosensors 2021, 11 (1), 24.
[3] Cheung, K. M.; Abendroth, J. M.; Nakatsuka, N.; Zhu, B.; Yang, Y.; Andrews, A. M.; Weiss, P. S. Detecting DNA and RNA and differentiating single-nucleotide variations via field-effect transistors. Nano letters 2020, 20 (8), 5982-5990.
[4] Cholko, T.; Chang, C.-e. A. Modeling effects of surface properties and probe density for nanoscale biosensor design: a case study of dna hybridization near surfaces. The Journal of Physical Chemistry B 2021, 125 (7), 1746-1754.
[5] Abe, S.; Thurner, S. Anomalous diffusion in view of Einstein′s 1905 theory of Brownian motion. Physica A: Statistical Mechanics and its Applications 2005, 356 (2-4), 403-407.
[6] Luo, X.; Deng, S.; Wang, P. Temporal–spatial-resolved mapping of the electrical double layer changes by surface plasmon resonance imaging. RSC advances 2018, 8 (50), 28266-28274.
[7] Chu, C.-J.; Yeh, C.-S.; Liao, C.-K.; Tsai, L.-C.; Huang, C.-M.; Lin, H.-Y.; Shyue, J.-J.; Chen, Y.-T.; Chen, C.-D. Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano letters 2013, 13 (6), 2564-2569.
[8] Hao, Z.; Pan, Y.; Huang, C.; Wang, Z.; Lin, Q.; Zhao, X.; Liu, S. Modulating the linker immobilization density on aptameric graphene field effect transistors using an electric field. ACS sensors 2020, 5 (8), 2503-2513.
[9] Khan, N. I.; Song, E. Detection of an il-6 biomarker using a gfet platform developed with a facile organic solvent-free aptamer immobilization approach. Sensors 2021, 21 (4), 1335.
[10] Yang, X.; Wang, Q.; Wang, K.; Tan, W.; Yao, J.; Li, H. Electrical switching of DNA monolayers investigated by surface plasmon resonance. Langmuir 2006, 22 (13), 5654-5659.
[11] Emaminejad, S.; Javanmard, M.; Gupta, C.; Chang, S.; Davis, R. W.; Howe, R. T. Tunable control of antibody immobilization using electric field. Proceedings of the National Academy of Sciences 2015, 112 (7), 1995-1999.
[12] Kyaw, H. H.; Boonruang, S.; Mohammed, W. S.; Dutta, J. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water. AIP Advances 2015, 5 (10), 107226.
[13] Kim, J. H.-S.; Marafie, A.; Jia, X.-Y.; Zoval, J. V.; Madou, M. J. Characterization of DNA hybridization kinetics in a microfluidic flow channel. Sensors and Actuators B: Chemical 2006, 113 (1), 281-289.
[14] Zhou, W.; Feng, M.; Valadez, A.; Li, X. One-step surface modification to graft DNA codes on paper: the method, mechanism, and its application. Analytical Chemistry 2020, 92 (10), 7045-7053.
[15] Peterson, A. W.; Heaton, R. J.; Georgiadis, R. M. The effect of surface probe density on DNA hybridization. Nucleic acids research 2001, 29 (24), 5163-5168.
[16] Das, S.; Devireddy, R.; Gartia, M. R. Surface plasmon resonance (SPR) sensor for cancer biomarker detection. Biosensors 2023, 13 (3), 396.
[17] Dahm, R. Friedrich Miescher and the discovery of DNA. Developmental biology 2005, 278 (2), 274-288.
[18] Watson, J. D.; Crick, F. H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953, 171 (4356), 737-738.
[19] Tinoco, I. Nucleic acid structures, energetics, and dynamics. The Journal of Physical Chemistry 1996, 100 (31), 13311-13322.
[20] Wing, R.; Drew, H.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R. E. Crystal structure analysis of a complete turn of B-DNA. Nature 1980, 287 (5784), 755-758.
[21] Krall, J. B.; Nichols, P. J.; Henen, M. A.; Vicens, Q.; Vögeli, B. Structure and Formation of Z-DNA and Z-RNA. Molecules 2023, 28 (2), 843.
[22] Rich, A.; Nordheim, A.; Wang, A. H.-J. The chemistry and biology of left-handed Z-DNA. Annual review of biochemistry 1984, 53 (1), 791-846.
[23] Neidle, S. Beyond the double helix: DNA structural diversity and the PDB. Journal of Biological Chemistry 2021, 296.
[24] Wang, D.; Farhana, A. Biochemistry, RNA Structure. 2020.
[25] Ebel, S.; Brown, T.; Lane, A. N. Thermodynamic stability and solution conformation of tandem G· A mismatches in RNA and RNA· DNA hybrid duplexes. European journal of biochemistry 1994, 220 (3), 703-715.
[26] Zhang, K.; Hodge, J.; Chatterjee, A.; Moon, T. S.; Parker, K. M. Duplex structure of double-stranded RNA provides stability against hydrolysis relative to single-stranded RNA. Environmental Science & Technology 2021, 55 (12), 8045-8053.
[27] Georgakopoulos-Soares, I.; Parada, G. E.; Hemberg, M. Secondary structures in RNA synthesis, splicing and translation. Computational and Structural Biotechnology Journal 2022, 20, 2871-2884.
[28] Collins, F. S.; Patrinos, A.; Jordan, E.; Chakravarti, A.; Gesteland, R.; Walters, L.; DOE, m. o. t.; groups, N. p. New goals for the US human genome project: 1998-2003. science 1998, 282 (5389), 682-689.
[29] Hammond, S. M.; Aartsma‐Rus, A.; Alves, S.; Borgos, S. E.; Buijsen, R. A.; Collin, R. W.; Covello, G.; Denti, M. A.; Desviat, L. R.; Echevarría, L. Delivery of oligonucleotide‐based therapeutics: challenges and opportunities. EMBO Molecular Medicine 2021, 13 (4), e13243.
[30] Mackay, I. M.; Arden, K. E.; Nitsche, A. Real-time PCR in virology. Nucleic acids research 2002, 30 (6), 1292-1305.
[31] Marmiroli, N.; Maestri, E. Polymerase chain reaction (PCR). In Food toxicants analysis, Elsevier, 2007; pp 147-187.
[32] Dragan, A.; Pavlovic, R.; McGivney, J.; Casas-Finet, J.; Bishop, E.; Strouse, R.; Schenerman, M.; Geddes, C. SYBR Green I: fluorescence properties and interaction with DNA. Journal of fluorescence 2012, 22, 1189-1199.
[33] Cao, Y.; Yu, M.; Dong, G.; Chen, B.; Zhang, B. Digital PCR as an emerging tool for monitoring of microbial biodegradation. Molecules 2020, 25 (3), 706.
[34] Cooper Jr, J.; Mintz, B.; Palumbo, S.; Li, W. Assays for determining cell differentiation in biomaterials. In Characterization of Biomaterials, Elsevier, 2013; pp 101-137.
[35] Tetyana, P.; Shumbula, P. M.; Njengele-Tetyana, Z. Biosensors: design, development and applications. In Nanopores, IntechOpen, 2021.
[36] Okahata, Y.; Kawase, M.; Niikura, K.; Ohtake, F.; Furusawa, H.; Ebara, Y. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Analytical chemistry 1998, 70 (7), 1288-1296.
[37] Forinová, M.; Pilipenco, A.; Vísová, I.; Lynn Jr, N. S.; Dostálek, J.; Masková, H.; Honig, V.; Palus, M.; Selinger, M.; Kocová, P. Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS applied materials & interfaces 2021, 13 (50), 60612-60624.
[38] Steglich, P.; Lecci, G.; Mai, A. Surface plasmon resonance (SPR) spectroscopy and photonic integrated circuit (PIC) biosensors: A comparative review. Sensors 2022, 22 (8), 2901.
[39] Nguyen, H. H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 2015, 15 (5), 10481-10510.
[40] Touahir, L.; Galopin, E.; Boukherroub, R.; Gouget-Laemmel, A. C.; Chazalviel, J.-N.; Ozanam, F.; Szunerits, S. Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization. Biosensors and Bioelectronics 2010, 25 (12), 2579-2585.
[41] Mascini, M.; Tombelli, S. Biosensors for biomarkers in medical diagnostics. Biomarkers 2008, 13 (7-8), 637-657.
[42] Larkins, M. C.; Thombare, A. Point-of-Care Testing. In StatPearls [Internet], StatPearls Publishing, 2023.
[43] Rodriguez-Manzano, J.; Malpartida-Cardenas, K.; Moser, N.; Pennisi, I.; Cavuto, M.; Miglietta, L.; Moniri, A.; Penn, R.; Satta, G.; Randell, P. Handheld point-of-care system for rapid detection of SARS-CoV-2 extracted RNA in under 20 min. ACS central science 2021, 7 (2), 307-317.
[44] Srinivasan, B.; Tung, S. Development and applications of portable biosensors. Journal of laboratory automation 2015, 20 (4), 365-389.
[45] Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279 (5348), 208-211.
[46] Cui, Y.; Duan, X.; Hu, J.; Lieber, C. M. Doping and electrical transport in silicon nanowires. The journal of physical chemistry B 2000, 104 (22), 5213-5216.
[47] Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. science 2001, 293 (5533), 1289-1292.
[48] Lee, C.-S.; Kim, S. K.; Kim, M. Ion-sensitive field-effect transistor for biological sensing. Sensors 2009, 9 (9), 7111-7131.
[49] Atalla, M. M.; Tannenbaum, E.; Scheibner, E. Stabilization of silicon surfaces by thermally grown oxides. Bell System Technical Journal 1959, 38 (3), 749-783.
[50] Shen, M.-Y.; Li, B.-R.; Li, Y.-K. Silicon nanowire field-effect-transistor based biosensors: From sensitive to ultra-sensitive. Biosensors and Bioelectronics 2014, 60, 101-111.
[51] Gao, N.; Zhou, W.; Jiang, X.; Hong, G.; Fu, T.-M.; Lieber, C. M. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano letters 2015, 15 (3), 2143-2148.
[52] Kaisti, M.; Kerko, A.; Aarikka, E.; Saviranta, P.; Boeva, Z.; Soukka, T.; Lehmusvuori, A. Real-time wash-free detection of unlabeled PNA-DNA hybridization using discrete FET sensor. Scientific Reports 2017, 7 (1), 1-8.
[53] Falina, S.; Syamsul, M.; Rhaffor, N. A.; Sal Hamid, S.; Mohamed Zain, K. A.; Abd Manaf, A.; Kawarada, H. Ten years progress of electrical detection of heavy metal ions (hmis) using various field-effect transistor (fet) nanosensors: A review. Biosensors 2021, 11 (12), 478.
[54] Li, Z.; Chen, Y.; Li, X.; Kamins, T.; Nauka, K.; Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires. nano letters 2004, 4 (2), 245-247.
[55] Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M. J. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators B: Chemical 2005, 111, 470-480.
[56] Lin, H.-Y. Counterion effects impact on microRNA detection by silicon nanowire field-effect transistors. MS Thesis, National Central University, Taoyuan, Taiwan, 2022.
[57] Yang, W.-W. Aptamer Sandwich Assay for an Ultra-high Sensitivity Detection of Cardiac Troponin I by Silicon Nanowire Field-effect Transistor. MS Thesis, National Central University, Taoyuan, Taiwan, 2023.
[58] Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano 2020, 14 (4), 5135-5142.
[59] Li, J.; Wu, D.; Yu, Y.; Li, T.; Li, K.; Xiao, M.-M.; Li, Y.; Zhang, Z.-Y.; Zhang, G.-J. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosensors and Bioelectronics 2021, 183, 113206.
[60] Jo, H.; Her, J.; Lee, H.; Shim, Y.-B.; Ban, C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta 2017, 165, 442-448.
[61] Schuck, A.; Kim, H. E.; Jung, K.-M.; Hasenkamp, W.; Kim, Y.-S. Monitoring the hemostasis process through the electrical characteristics of a graphene-based field-effect transistor. Biosensors and Bioelectronics 2020, 157, 112167.
[62] Hahm, J.-i.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano letters 2004, 4 (1), 51-54.
[63] Lu, N.; Gao, A.; Dai, P.; Song, S.; Fan, C.; Wang, Y.; Li, T. CMOS‐compatible silicon nanowire field‐effect transistors for ultrasensitive and label‐free microRNAs sensing. small 2014, 10 (10), 2022-2028.
[64] Li, H.; Li, D.; Chen, H.; Yue, X.; Fan, K.; Dong, L.; Wang, G. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. Sensors 2023, 23 (15), 6808.
[65] Chen, W.-Y.; Chen, H.-C.; Yang, Y.-S.; Huang, C.-J.; Chan, H. W.-H.; Hu, W.-P. Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosensors and Bioelectronics 2013, 41, 795-801.
[66] Zhou, J. C.; Feller, B.; Hinsberg, B.; Sethi, G.; Feldstein, P.; Hihath, J.; Seker, E.; Marco, M.; Knoesen, A.; Miller, R. Immobilization-mediated reduction in melting temperatures of DNA–DNA and DNA–RNA hybrids: Immobilized DNA probe hybridization studied by SPR. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 481, 72-79.
[67] An, N.; Li, K.; Zhang, Y.; Wen, T.; Liu, W.; Liu, G.; Li, L.; Jin, W. A multiplex and regenerable surface plasmon resonance (MR-SPR) biosensor for DNA detection of genetically modified organisms. Talanta 2021, 231, 122361.
[68] Assaad, R.; Krafft, C. The Egyptian labor market in an era of revolution; OUP Oxford, 2015.
[69] Madou, M. J. Fundamentals of microfabrication: the science of miniaturization; CRC press, 2002.
[70] Van Krevelen, D.; Te Nijenhuis, K. Properties determining mass transfer in polymeric systems. Property of polymers. 4th ed. Amsterdam, The Netherlands: Elsevier 2009, 660.
[71] Reineck, P.; Wienken, C. J.; Braun, D. Thermophoresis of single stranded DNA. Electrophoresis 2010, 31 (2), 279-286.
[72] Nkodo, A. E.; Garnier, J. M.; Tinland, B.; Ren, H.; Desruisseaux, C.; McCormick, L. C.; Drouin, G.; Slater, G. W. Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 2001, 22 (12), 2424-2432.
[73] Schmitt, R. Electromagnetics explained: a handbook for wireless/RF, EMC, and high-speed electronics; Newnes, 2002.
[74] Voldman, J. Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 2006, 8, 425-454.
[75] Roche, J. Introducing electric fields. Physics Education 2016, 51 (5), 055005.
[76] Chu, C.-H.; Sarangadharan, I.; Regmi, A.; Chen, Y.-W.; Hsu, C.-P.; Chang, W.-H.; Lee, G.-Y.; Chyi, J.-I.; Chen, C.-C.; Shiesh, S.-C. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Scientific reports 2017, 7 (1), 5256.
[77] Chen, Y.-T.; Sarangadharan, I.; Sukesan, R.; Hseih, C.-Y.; Lee, G.-Y.; Chyi, J.-I.; Wang, Y.-L. High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity. Scientific reports 2018, 8 (1), 8300.
[78] Parizi, K. B.; Xu, X.; Pal, A.; Hu, X.; Wong, H. P. ISFET pH sensitivity: counter-ions play a key role. Scientific reports 2017, 7 (1), 41305.
[79] Shah, A. A.; Kang, H.; Kohlstedt, K. L.; Ahn, K. H.; Glotzer, S. C.; Monroe, C. W.; Solomon, M. J. Liquid crystal order in colloidal suspensions of spheroidal particles by direct current electric field assembly. Small 2012, 8 (10), 1551-1562.
[80] Kaziz, S.; Saad, Y.; Bouzid, M.; Selmi, M.; Belmabrouk, H. Enhancement of COVID-19 detection time by means of electrothermal force. Microfluidics and Nanofluidics 2021, 25, 1-12.
[81] Yeh, I.-C.; Hummer, G. Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations. Biophysical journal 2004, 86 (2), 681-689.
[82] Wang, H.; Tang, Z.; Li, Z.; Wang, E. Self-assembled monolayer of ssDNA on Au (1 1 1) substrate. Surface science 2001, 480 (1-2), L389-L394.
[83] Hantz, E.; Larue, V.; Ladam, P.; Le Moyec, L.; Gouyette, C.; Dinh, T. H. Solution conformation of an RNA–DNA hybrid duplex containing a pyrimidine RNA strand and a purine DNA strand. International journal of biological macromolecules 2001, 28 (4), 273-284.
[84] Michel, W.; Mai, T.; Naiser, T.; Ott, A. Optical study of DNA surface hybridization reveals DNA surface density as a key parameter for microarray hybridization kinetics. Biophysical journal 2007, 92 (3), 999-1004.
[85] Munir, A.; Waseem, H.; Williams, M. R.; Stedtfeld, R. D.; Gulari, E.; Tiedje, J. M.; Hashsham, S. A. Modeling hybridization kinetics of gene probes in a DNA biochip using FEMLAB. Microarrays 2017, 6 (2), 9.
[86] Bongrand, P. Specific and nonspecific interactions in cell biology. Journal of dispersion science and technology 1998, 19 (6-7), 963-978.
[87] Lichtenberg, J. Y.; Ling, Y.; Kim, S. Non-specific adsorption reduction methods in biosensing. Sensors 2019, 19 (11), 2488.
[88] Liu, N.; Xu, Z.; Morrin, A.; Luo, X. Low fouling strategies for electrochemical biosensors targeting disease biomarkers. Analytical Methods 2019, 11 (6), 702-711.
[89] Soler, M.; Lechuga, L. M. Biochemistry strategies for label-free optical sensor biofunctionalization: Advances towards real applicability. Analytical and bioanalytical chemistry 2022, 1-15.
[90] Li, K.; Qi, Y.; Zhou, Y.; Sun, X.; Zhang, Z. Microstructure and properties of poly (ethylene glycol)-segmented polyurethane antifouling coatings after immersion in seawater. Polymers 2021, 13 (4), 573.
[91] Sharma, S.; Johnson, R. W.; Desai, T. A. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosensors and Bioelectronics 2004, 20 (2), 227-239.
[92] Ren, C.-l.; Schlapak, R.; Hager, R.; Szleifer, I.; Howorka, S. Molecular and thermodynamic factors explain the passivation properties of poly (ethylene glycol)-coated substrate surfaces against fluorophore-labeled DNA oligonucleotides. Langmuir 2015, 31 (42), 11491-11501.
[93] Turchanin, A.; Gölzhäuser, A. Carbon nanomembranes from self-assembled monolayers: Functional surfaces without bulk. Progress in Surface Science 2012, 87 (5-8), 108-162.
[94] Rush, M. N.; Coombs, K. E.; Hedberg-Dirk, E. L. Surface chemistry regulates valvular interstitial cell differentiation in vitro. Acta biomaterialia 2015, 28, 76-85.
[95] Howarter, J. A.; Youngblood, J. P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 2006, 22 (26), 11142-11147.
[96] Capecchi, G.; Faga, M. G.; Martra, G.; Coluccia, S.; Iozzi, M. F.; Cossi, M. Adsorption of CH 3 COOH on TiO 2: IR and theoretical investigations. Research on Chemical Intermediates 2007, 33, 269-284.
[97] Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 2005, 105 (4), 1103-1170.
[98] Wang, G. M.; Sandberg, W. C.; Kenny, S. D. Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology 2006, 17 (19), 4819.
[99] Hynninen, V.; Vuori, L.; Hannula, M.; Tapio, K.; Lahtonen, K.; Isoniemi, T.; Lehtonen, E.; Hirsimäki, M.; Toppari, J. J.; Valden, M. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology. Scientific Reports 2016, 6 (1), 29324.
[100] Vu, C.-A.; Chen, W.-Y.; Yang, Y.-S.; Chan, H. W.-H. Improved biomarker quantification of silicon nanowire field-effect transistor immunosensors with signal enhancement by RNA aptamer: Amyloid beta as a case study. Sensors and Actuators B: Chemical 2021, 329, 129150.
[101] Rashid, J. I. A.; Yusof, N. A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sensing and bio-sensing research 2017, 16, 19-31.
[102] Kim, H. H.; Jeon, H. J.; Cho, H. K.; Cheong, J. H.; Moon, H. S.; Go, J. S. Highly sensitive microcantilever biosensors with enhanced sensitivity for detection of human papilloma virus infection. Sensors and Actuators B: Chemical 2015, 221, 1372-1383.
[103] Wu, C.-C.; Manga, Y. B.; Yang, M.-H.; Chien, Z.-S.; Lee, K.-S. Label-Free Detection of BRAFV599E Gene Mutation Using Side-Gated Nanowire Field Effect Transistors. Journal of The Electrochemical Society 2018, 165 (13), B576.
[104] Esmail, A.; Pereira, J. R.; Zoio, P.; Silvestre, S.; Menda, U. D.; Sevrin, C.; Grandfils, C.; Fortunato, E.; Reis, M. A.; Henriques, C. Oxygen plasma treated-electrospun polyhydroxyalkanoate scaffolds for hydrophilicity improvement and cell adhesion. Polymers 2021, 13 (7), 1056.
[105] Uhrovčík, J. Strategy for determination of LOD and LOQ values–Some basic aspects. Talanta 2014, 119, 178-180.
[106] Miller, J.; Miller, J. C. Statistics and chemometrics for analytical chemistry; Pearson education, 2018.
[107] Einav, S.; O′Connor, M. p-values and significance: The null hypothesis that they are not related is correct. Journal of critical care 2019, 54, 159-162.
[108] Nahm, F. S. What the P values really tell us. The Korean journal of pain 2017, 30 (4), 241-242.
[109] Hu, W.-P.; Wu, Y.-M.; Vu, C.-A.; Chen, W.-Y. Ultrasensitive Detection of Interleukin 6 by Using Silicon Nanowire Field-Effect Transistors. Sensors 2023, 23 (2), 625.
[110] Mujumdar, R. B.; Ernst, L. A.; Mujumdar, S. R.; Lewis, C. J.; Waggoner, A. S. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate chemistry 1993, 4 (2), 105-111.
[111] Rashid, F.; Raducanu, V.-S.; Zaher, M. S.; Tehseen, M.; Habuchi, S.; Hamdan, S. M. Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation. Nature communications 2019, 10 (1), 2104.
[112] Bartl, J. D.; Gremmo, S.; Stutzmann, M.; Tornow, M.; Cattani-Scholz, A. Modification of silicon nitride with oligo (ethylene glycol)-terminated organophosphonate monolayers. Surface Science 2020, 697, 121599.
[113] Nikonov, A.; Naumova, O.; Generalov, V.; Safatov, A.; Fomin, B. Surface Preparation as a Step in the Fabrication of Biosensors Based on Silicon Nanowire Field-Effect Transistors. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 2020, 14, 337-346.
[114] Sharma, S.; Popat, K. C.; Desai, T. A. Controlling nonspecific protein interactions in silicon biomicrosystems with nanostructured poly (ethylene glycol) films. Langmuir 2002, 18 (23), 8728-8731.
[115] Salem, M.; Mauguen, Y.; Prangé, T. Revisiting glutaraldehyde cross-linking: the case of the Arg–Lys intermolecular doublet. Acta Crystallographica Section F: Structural Biology and Crystallization Communications 2010, 66 (3), 225-228.
[116] Liubysh, O.; Vlasiuk, A.; Perepelytsya, S. Structuring of counterions around DNA double helix: a molecular dynamics study. arXiv preprint arXiv:1503.05334 2015.
[117] Matbaechi Ettehad, H.; Yadav, R. K.; Guha, S.; Wenger, C. Towards CMOS integrated microfluidics using dielectrophoretic immobilization. Biosensors 2019, 9 (2), 77.
[118] Peterson, E. M.; Manhart, M. W.; Harris, J. M. Single-molecule fluorescence imaging of interfacial DNA hybridization kinetics at selective capture surfaces. Analytical chemistry 2016, 88 (2), 1345-1354. |