博碩士論文 108324028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.219.242.175
姓名 賴澤霖(Tse-Lin, Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 添加劑誘導之二維成核與成長模型及其對奈米雙晶銅表面粗糙度的控制
(Additive-induced 2D nucleation and growth model for controlling the surface roughness of nanotwinned Cu)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 奈米雙晶銅(nanotwinned Cu)因其卓越的性能在先進封裝技術中備受關注。它具有高機械強度、低電阻率、高熱穩定性和優異的抗電遷移能力,使其成為半導體封裝的理想材料。然而,奈米雙晶銅薄膜表面較為粗糙,這對其實際應用提出挑戰。低表面粗糙度對電鍍銅薄膜在提高元件可靠性和減少電阻方面具有重要作用。尤其在5G通信技術中,高頻交流電傳輸下,趨膚效應使得表面粗糙度對信號損失的影響更加顯著。
本研究藉由溫度控制的方法來改變奈米雙晶銅薄膜的表面形貌。溫度控制能透過改變成核與成長行為來精確控制表面粗糙度。同時,為了能夠更精準地控制奈米雙晶銅薄膜的結構及性能,本研究探討了其生長機制。
在探討奈米雙晶銅的生長機制時,文獻提出了兩種可能的模式:傳統的2D成核與成長模型和螺旋生長模型。傳統的2D成核與成長模型只能解釋平滑且均勻的表面結構,但無法合理解釋奈米雙晶銅薄膜表面的金字塔形貌及成核位置與數量。故本研究假設較符合表面形貌特徵得螺旋生長作為模型,並進行了一系列熱力學推導,得出了溫度與金字塔斜率之間的理論關係。根據螺旋生長模型,溫度提高使臨界成核半徑增加,金字塔斜率應減小,表面粗糙度應降低。然而,實驗結果顯示,隨著溫度升高,金字塔斜率增加,這與螺旋生長模型的理論預測相悖,表明奈米雙晶銅的生長機制可能並非螺旋生長。
因此,本研究首先分析了電鍍過程中添加劑在的功用以及溫度對添加劑吸附/脫附行為的影響,結合兩者提出了一種新型的添加劑誘導的2D成核與成長模型:低溫條件下,添加劑吸附濃度高,強抑制作用提升了二次成核過電位,有利於形成低斜率但表面具有巨型台階及尖銳的金字塔形貌;高溫則相反,斜率高但表面平滑。
總結,通過降低電鍍溫度以增強抑制作用,可以有效降低奈米雙晶銅薄膜的表面金字塔型貌的斜率進一步降低表面粗糙度,大幅提升其應用性。所提出的新型奈米雙晶銅生長模型闡述了添加劑的作用及表面銅吸附原子成核與成長行為,使電鍍奈米雙晶銅的生長機制更加明朗。未來可嘗試通過提高電場等其他方法來增強抑制作用,在不大幅影響奈米雙晶銅生長機制的情況下,進一步降低表面粗糙度。
摘要(英) Nanotwinned Cu has garnered significant attention in advanced packaging technologies due to its exceptional properties. It possesses high mechanical strength, low electrical resistivity, high thermal stability, and excellent resistance to electromigration, making it an ideal material for semiconductor packaging. However, the surface roughness of nanotwinned Cu films poses challenges for practical applications. Low surface roughness plays a crucial role in enhancing the reliability of electroplated Cu films and reducing resistance, especially in 5G communication technologies where the skin effect at high-frequency AC transmission makes the impact of surface roughness on signal loss more significant.
This study explores the modification of the surface morphology of nanotwinned Cu films through temperature control. Temperature control allows for precise regulation of surface roughness by altering nucleation and growth behaviors. Additionally, to more accurately control the structure and performance of nanotwinned Cu films, this study investigates their growth mechanisms.
In exploring the growth mechanisms of nanotwinned Cu, the literature proposes two possible models: the traditional 2D nucleation and growth model and the spiral growth model. The traditional 2D nucleation and growth model can only explain smooth and uniform surface structures but fails to adequately account for the pyramidal morphology and the nucleation sites and quantity on nanotwinned Cu film surfaces. Thus, this study assumes a spiral growth model that better fits the surface morphology characteristics, conducting a series of thermodynamic derivations to establish a theoretical relationship between temperature and pyramid slope. According to the spiral growth model, an increase in temperature should increase the critical nucleation radius, decrease the pyramid slope, and reduce surface roughness. However, experimental results show that as temperature increases, the pyramid slope also increases, contradicting the theoretical predictions of the spiral growth model, indicating that the growth mechanism of nanotwinned copper might not be spiral growth.
Therefore, this study first analyzes the role of additives during the electroplating process and the effect of temperature on the adsorption/desorption behavior of additives. Combining these factors, a new additive-induced 2D nucleation and growth model is proposed: under low-temperature conditions, high additive adsorption concentration and strong inhibition enhance the secondary nucleation overpotential, favoring the formation of low-slope but sharply pyramidal surfaces; at high temperatures, the opposite occurs, resulting in high slopes but smoother surfaces.
In summary, by lowering the electroplating temperature to enhance inhibition, the pyramid slope of nanotwinned Cu films can be effectively reduced further decreasing surface roughness and significantly enhancing their applicability. The proposed new model for nanotwinned Cu growth elucidates the role of additives and the nucleation and growth behavior of surface Cu adatoms, clarifying the growth mechanisms of electroplated nanotwinned Cu. Future attempts could explore enhancing inhibition through other methods such as increasing the electric field, further reducing surface roughness without significantly affecting the growth mechanism of nanotwinned Cu.
關鍵字(中) ★ 奈米雙晶銅 關鍵字(英) ★ nanotwinned Cu
論文目次 中文摘要 i
Abstract ii
Table of Content v
List of figures vii
List of tables xi
Chapter 1: Introduction 1
1.1 Introduction of nanotwinned Cu 1
1.1-1 Properties of nanotwinned Cu and its potential in advanced packaging 1
1.1-2 Fabrication methods of nanotwinned Cu 7
1.1-3 Potential growth mechanisms of electroplated nanotwinned Cu 11
1.2 Surface roughness of electroplated Cu 13
1.2-1 The significance of achieving low surface roughness in electroplated Cu 13
1.2-2 Electroplated Cu surface roughness characterization techniques 16
1.2-3 Control methods for surface roughness in electroplated Cu 19
Chapter 2: Motivation 27
Chapter 3: Experiment procedure 29
3.1 Fabrication of nanotwinned Cu sample by different temperature 29
Chapter 4: Analysis of temperature effects on pyramid slope in nanotwinned Cu 31
4.1 Research objectives 31
4.2 Theoretical analysis of pyramid slopes by spiral growth mechanism 33
4.2-1 Relationship between overpotential and pyramid slope 33
4.2-2 The impact of temperature on overpotential 37
4.3 Experimental analysis of pyramid slope in nanotwinned Cu 40
Chapter 5: The role of additives and a novel growth model for nanotwinned Cu 44
5.1 The effect of temperature on additive ad/desorption behavior 44
5.2 Growth model of electroplated nanotwinned Cu 48
5.2-1 The role and effects of additives 48
5.2-2 Additive-induced 2D nucleation and growth model 50
Chapter 6: Summary 58
Reference: 60

參考文獻 Reference:
1. Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426.
2. Pan, H.J., Y. He, and X.D. Zhang, Interactions between Dislocations and Boundaries during Deformation. Materials, 2021. 14(4).
3. César, M., et al., Calculated Resistances of Single Grain Boundaries in Copper. Physical Review Applied, 2014. 2(4).
4. Gall, D., The search for the most conductive metal for narrow interconnect lines. Journal of Applied Physics, 2020. 127(5).
5. Kim, T.H., et al., Large Discrete Resistance Jump at Grain Boundary in Copper Nanowire. Nano Letters, 2010. 10(8): p. 3096-3100.
6. Lanzillo, N.A., Ab Initio evaluation of electron transport properties of Pt, Rh, Ir, and Pd nanowires for advanced interconnect applications. Journal of Applied Physics, 2017. 121(17).
7. Zhou, B.H., et al., An ab initio investigation on boundary resistance for metallic grains. Solid State Communications, 2010. 150(29-30): p. 1422-1424.
8. Tseng, C.-H., et al., Kinetic study of grain growth in highly (111)-preferred nanotwinned copper films. Materials Characterization, 2020. 168.
9. Lu, C.-L., et al., Extremely anisotropic single-crystal growth in nanotwinned copper. NPG Asia Materials, 2014. 6(10): p. e135-e135.
10. Huang, Y.-S., et al., Grain growth in electroplated (111)-oriented nanotwinned Cu. Scripta Materialia, 2014. 89: p. 5-8.
11. Zhao, Y.F., et al., Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. Journal of Materials Research, 2012. 27(24): p. 3049-3057.
12. Shen, F.-C., et al., Atomic-Scale Investigation of Electromigration with Different Directions of Electron Flow into High-Density Nanotwinned Copper through In Situ HRTEM. Acta Materialia, 2021. 219.
13. Tseng, I.H., et al., Electromigration failure mechanisms of 〈1 1 1〉 -oriented nanotwinned Cu redistribution lines with polyimide capping. Results in Physics, 2021. 24.
14. Tseng, I.H., et al., High Electromigration Lifetimes of Nanotwinned Cu Redistribution Lines, in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). 2019. p. 1328-1332.
15. Hu, H.-W. and K.-N. Chen, Development of low temperature CuCu bonding and hybrid bonding for three-dimensional integrated circuits (3D IC). Microelectronics Reliability, 2021. 127: p. 114412.
16. Agrawal, P.M., B.M. Rice, and D.L. Thompson, Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science, 2002. 515(1): p. 21-35.
17. Chen, K.-N., et al., Microstructure evolution and abnormal grain growth during copper wafer bonding. Applied Physics Letters, 2002. 81(20): p. 3774-3776.
18. Liu, C.M., et al., Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific Reports, 2015. 5.
19. Ong, J.-J., et al. Reliability Enhancement of Cu-Cu joints by Two-step Bonding Process. in 2021 16th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2021. IEEE.
20. Ong, J.-J., et al., Shearing characteristics of Cu-Cu joints fabricated by two-step process using highly< 111>-oriented nanotwinned Cu. Metals, 2021. 11(11): p. 1864.
21. Ong, J.J., et al. Two-step fabrication process for die-to-die and die-to-wafer Cu-Cu bonds. in 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). 2021. IEEE.
22. Wu, Y.T. and C. Chen, Low Temperature Cu-to-Cu Bonding in Non-vacuum Atmosphere with Thin Gold Capping on Highly (111) Oriented Nanotwinned Copper. Journal of Electronic Materials, 2020. 49(1): p. 13-17.
23. Ong, J.J., et al., Low-Temperature Cu/SiO Hybrid Bonding with Low Contact Resistance Using (111)-Oriented Cu Surfaces. Materials, 2022. 15(5).
24. Zhang, X., et al., High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Applied Physics Letters, 2006. 88(17).
25. Chen, K.J., J.A. Wu, and C. Chen, Effect of Reverse Currents during Electroplating on the ⟨111⟩-Oriented and Nanotwinned Columnar Grain Growth of Copper Films. Crystal Growth & Design, 2020. 20(6): p. 3834-3841.
26. Zhan, X.F., et al., Preparation of highly (111) textured nanotwinned copper by me dium-frequency pulse d electrodeposition in an additive-free electrolyte. Electrochimica Acta, 2021. 365.
27. Seo, S., et al., The Effect of Copper Dissolution in Acidic Electrolyte on the Formation of Nanotwin in Pulse Electrodeposited Copper. Journal of the Electrochemical Society, 2014. 161(9): p. D425-D428.
28. Xu, D., et al., In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. Journal of Applied Physics, 2009. 105(2).
29. Lin, T.C., et al., Inhibiting the detrimental Cu protrusion in Cu through-silicon-via by highly (111)-oriented nanotwinned Cu. Scripta Materialia, 2021. 197.
30. Liu, T.C., et al., Fabrication and Characterization of (111)-Oriented and Nanotwinned Cu by Dc Electrodeposition. Crystal Growth & Design, 2012. 12(10): p. 5012-5016.
31. Cheng, Z., et al., Extra strengthening and work hardening in gradient nanotwinned metals. Science, 2018. 362(6414): p. 559-+.
32. Chen, P.X., et al., Surface atom migration-involved two-dimensional nucleation and growth of nanotwinned copper in DC electrodeposition. Acta Materialia, 2024. 262.
33. Xue, Z.M., et al., Manipulating the microstructure of Cu from direct current electrodeposition without additives to overcome the strength-ductility trade-off. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022. 849.
34. Deng, Y.P., et al., Electrodeposition and characterization of copper nanocone structures. Crystengcomm, 2015. 17(4): p. 868-876.
35. Nasirpouri, F., Electrodeposition of nanostructured materials. Vol. 62. 2017: Springer.
36. Li, Y. and D. Goyal, 3D microelectronic packaging: from fundamentals to applications. Vol. 57. 2017: Springer.
37. Kim, K., et al., Effects of electromagnetic waves with LTE and 5G bandwidth on the skin pigmentation in vitro. International Journal of Molecular Sciences, 2021. 22(1): p. 170.
38. Gamburg, Y.D. and G. Zangari, Theory and practice of metal electrodeposition. 2011, New York ; London: Springer. xvii, 378 pages.
39. Huang, Q., et al., Leveler Effect and Oscillatory Behavior during Copper Electroplating. Journal of The Electrochemical Society, 2012. 159(9): p. D526-D531.
40. Bandas, C.D., et al., Interfacial Leveler-Accelerator Interactions in Cu Electrodeposition. Journal of The Electrochemical Society, 2021. 168(4).
41. Kelly, J.J. and A.C. West, Copper deposition in the presence of polyethylene glycol - I. Quartz crystal microbalance study. Journal of the Electrochemical Society, 1998. 145(10): p. 3472-3476.
42. Kelly, J.J., C.Y. Tian, and A.C. West, Leveling and microstructural effects of additives for copper electrodeposition. Journal of the Electrochemical Society, 1999. 146(7): p. 2540-2545.
43. Lin, K.C., et al., Electroplating copper in sub-100 nm gaps by additives with low consumption and diffusion ability. Journal of Vacuum Science & Technology B, 2002. 20(3): p. 940-945.
44. Chen, T.-C., et al., Effects of Brighteners in a Copper Plating Bath on Throwing Power and Thermal Reliability of Plated Through Holes. Electrochimica Acta, 2016. 212: p. 572-582.
45. Natter, H. and R. Hempelmann, Nanocrystalline copper by pulsed electrodeposition: The effects of organic additives, bath temperature, and pH. Journal of Physical Chemistry, 1996. 100(50): p. 19525-19532.
46. Liao, C.N., et al., Morphology, Texture and Twinning Structure of Cu Films Prepared by Low-Temperature Electroplating. Journal of the Electrochemical Society, 2013. 160(12): p. D3070-D3074.
47. Park, S., et al., The Effects of Bath Temperature on the Formation of Nanotwin in Electrodeposited Cu. Journal of Nanoscience and Nanotechnology, 2016. 16(11): p. 11303-11307.
48. Burton, W.-K., N.t. Cabrera, and F. Frank, The growth of crystals and the equilibrium structure of their surfaces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1951. 243(866): p. 299-358.
49. Frank, F.C., The influence of dislocations on crystal growth. Discussions of the Faraday Society, 1949. 5: p. 48-54.
50. Cabrera, N. and M. Levine, XLV. On the dislocation theory of evaporation of crystals. Philosophical Magazine, 1956. 1(5): p. 450-458.
51. Budevski, E.B., G.T. Staikov, and W.J. Lorenz, Electrochemical phase formation and growth: an introduction to the initial stages of metal deposition. 2008: John Wiley & Sons.
52. Markov, I. and R. Kaischew, Influence of the supersaturation on the mode of thin film growth. Kristall und Technik, 1976. 11(7): p. 685-697.
53. Ladbury, J.E. and B.Z. Chowdhry, Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chemistry & biology, 1996. 3(10): p. 791-801.
54. Sanchez-Ruiz, J.M., Protein kinetic stability. Biophys Chem, 2010. 148(1-3): p. 1-15.
55. Lee, C.-H., et al., Effect of De-Twinning on Tensile Strength of Nano-Twinned Cu Films. Nanomaterials, 2021. 11(7): p. 1630.
56. Meudre, C., et al., Adsorption of gelatin during electrodeposition of copper and tin–copper alloys from acid sulfate electrolyte. Surface and Coatings Technology, 2014. 252: p. 93-101.
57. Burton, W., N. Cabrera, and F. Frank, Role of dislocations in crystal growth. Nature, 1949. 163(4141): p. 398-399.
指導教授 劉正毓(Cheng-Yi, Liu) 審核日期 2024-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明