博碩士論文 111223022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:112 、訪客IP:3.135.204.225
姓名 林亮瑋(Liang-Wei Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 四苯基乙烯(TPE)衍生物之電子傳輸層材料開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本篇論文是以四苯基乙烯 ( tetraphenylethene, TPE ) 作為核心,開發出一系列的電子傳輸層料材料 (electron transporting materials, ETM),應用於鉛鈣鈦礦太陽能電池。
本研究在TPE的末端接上一系列不同的拉電子基團 (electron-withdrawing group, EWG) : 五氟苯 (pentafluorobenzene, FP)、 3,5-雙三氟甲基苯 (3,5-bis(trifluoromethyl)benzene, MFP) 、甲腈 (nitrile, CN) 及硝基 (nitro, NO2),成功合成出 TFP-TPE (1)、TFMP-TPE (2) 、TPE-CN (3) 及TPE-NO2 (4) 四種材料。
作為核心之TPE除了合成步驟簡單外,苯環與中心的雙鍵結構具有良好的π-π 作用力,使材料在製成元件時能夠更好的堆疊,提升分子間電荷傳輸能力。其中, TFP-TPE (1) 有進一步的得到晶體,可以更深入的了解到分子內之二面角,與分子間的堆疊情況。
以上材料皆使用NMR與質譜之結構鑒定,並利用DPV及UV-Vis測量其光學及電化學性質,再以TGA及DSC確認此材料的熱穩定性。四種材料所製成的元件效率初步測試具有不錯的效能,其中一材料之效能已超過20%,期望後續優化能有進一步地提升。
摘要(英) This study describes the development of a series of electron
transporting materials (ETMs) for application in lead perovskite solar cells (Pb-PSCs). Tetraphenylethene (TPE) was used as a core, while various electron-withdrawing groups (EWGs), such as pentafluorobenzene (FP), 3,5-bis(trifluoromethyl)benzene (FMP), nitrile (CN), and nitro (NO2) were tetra-coupled to the TPE, resulting in the successful synthesis of four materials: TFP-TPE (1), TFMP-TPE (2), TPE-CN (3), and TPE-NO2 (4).
TPE core was synthesized using a simple synthetic route and
exhibits strong π-π interactions between the phenyl rings and the central double bond. These interactions facilitate better stacking of the molecules during device fabrication and enhance intermolecular charge transfer capabilities. Additionally, the single crystal structure of TFP-TPE (1) was grown, allowing for a deeper understanding of its structural properties.
The chemical structures of these materials were confirmed using NMR and mass spectrometry, while their optical and electrochemical properties were characterized via DPV and UV-Vis measurements. Thermal stability was verified by TGA and DSC. Preliminary efficiency tests of Pb-based PSC devices fabricated with these four materials showed promising results. Among them, TFP-TPE (1) achieves over 20% efficiency. Further optimization is expected to enhance efficiency.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電子傳輸層材料
★ 四苯基乙烯
★ 非富勒烯材料
關鍵字(英) ★ Perovskite Solar Cell
★ Electron transporting material
★ TPE
★ tetraphenylethylene
★ non-fullerene acceptor
★ ETM
論文目次 摘要 I
Abstract II
謝誌 IV
目錄 VI
List of Figures X
List of Schemes XII
List of Tables XIII
附錄資料 XIV
第一章 緒論 1
1-1 太陽能電池之前言 2
1-2 太陽能電池之概論 3
1-2-1 矽晶太陽能電池 5
1-2-2 無機化合物半導體太陽能電池 5
1-2-3 有機太陽能電池 6
1-3 太陽能電池參數介紹 7
1-3-1 J-V 曲線 8
1-3-2 短路電流(Short circuit current, JSC) 9
1-3-3 開路電壓(Open circuit voltage, VOC) 9
1-3-4 外部量子效率(Eternal quantum efficiency, EQE) 10
1-3-5 填充因子(Fill factor, FF) 10
1-3-6 能量轉換效率(Power conversion efficiency, η, PCE) 11
1-4 鈣鈦礦太陽能電池簡介 12
1-4-1 太陽能電池之基本元件與組成 13
1-4-2 工作原理 15
1-4-3 電子傳輸層材料 16
1-5 研究動機與目的 20
第二章實驗部分 24
2-1 化合物名稱對照 25
2-2 實驗藥品 26
2-2-1實驗所用之化學藥品 26
2-2-2 實驗所用之溶劑除水方式 27
2-3 實驗儀器 28
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz 28
2-3-2 高解析質譜儀(High Resolution Mass Spectrometer, HRMS);JMS-700 HRMS 28
2-3-3 示差熱掃描卡計(Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1 29
2-3-4 紫外光 / 可見光吸收光譜 (Ultraviolet Visible Near-infare Spectrophotometer, UV/VIS/NIR Spectrophotometer); UH5700 型 29
2-3-5 熱重分析儀 (Thermal Gravimetric Analyer, TGA);TGA 55 29
2-3-6 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C 29
2-3-7 X光單晶繞射儀(Single Crystal X-Ray Diffractometer) ; Rigaku XtaLAB Synergy DW 30
2-4 合成步驟 31
2-4-1 1,1,2,2-tetrakis(4-bromophenyl)ethene之合成 31
2-4-2 1,1,2,2-tetrakis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethene之合成 33
2-4-3 1,1,2,2-tetrakis(2′,3′,4′,5′,6′-pentafluoro-[1,1′-biphenyl]-4-yl)ethene之合成 34
2-4-4 1,1,2,2-tetrakis(3′,5′-bis(trifluoromethyl)-[1,1′-biphenyl]-4-yl)ethene (2)之合成 35
3-4-5 4,4′,4′′,4′′′-(ethene-1,1,2,2-tetrayl)tetrabenzonitrile (3)之合成 36
2-4-6 1,1,2,2-tetrakis(4-nitrophenyl)ethene (4)之合成 37
第三章結果與討論 38
3-1 有機光電材料之密度泛函理論計算 39
3-2 有機光電材料之光學性質探討 43
3-3 有機光電材料之電化學性質探討 45
3-4 有機光電材料之熱穩定性質分析 50
3-5 有機光電材料之晶體結構探討 53
第四章結論 58
第五章附錄 61
第六章參考文獻 77
參考文獻 Green, M. A.; Emery, K.; King, D. L.; Hishikawa, Y.; Warta, W. Prog. Photovoltaics. 2006, 14, 5, 455.
Becquerel, E. C. R. Acad. Sci. 1839, 9, 561–567.
Chapin, D. M.; Fuller, C. S.; Pearson, G. L. Journal of Applied Physics 1954, 25 (5), 676-677.
https://www.nrel.gov/pv/cell-efficiency.html
Green, M. A.; Dunlop, E. D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Prog. Photovolt. Res. Appl. 2023, 3, 3−16.
https://www.solarfeeds.com/mag/wiki/copper-indium-gallium-selenide/
Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021-1033.
Boudreault, P. L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456-469.
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374-380.
Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H. RSC Adv. 2018, 8, 10489-10508.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051.
Kim, H. -S.; Lee, C. -R.; Im, J. H.; Lee, K. -B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker R.; Yum, J. -H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 1-7.
Min, H.; Lee, D. -Y.; Kim, J.; Kim, G.; Lee, K. -S.; Kim, J.; Paik, M. J.; Kim, Y. -K.; Kim, K. -S.; Kim, M. -G.; Shin, T. -J.; Il Seok, S. Nature 2021, 598 (7881), 444-450.
Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. J. Photonics Energy, 2016, 6, 022001.
Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J.
Energy Environ. Sci., 2014, 7, 2359–2365.
Chiang,C.-H.; Tseng, Z.L.; Wu, C.-G. J. Mater. Chem. A ,2014, 2, 15897–15903.
Malinkiewicz, O.; Yella, A.; Lee, Y.-H.; Espallargas, G.M.; Gratzel,M.; Nazeeruddin, M.K.; Bolink, H.J. Nat. Photonics , 2014, 8, 128–132.
Sun, X.; Ji, L.-Y.; Chen, W.-W.; Guo, X.; Wang,H.-H.; Lei, M.; Wang, Q.; Li, Y.-F. J. Mater. Chem. A 2017, 5, 20720.
Shao,Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nat. Commun. 2014, 5, 5784.
Li, J.; Zhang,Q. ACS Appl. Mater. Interfaces 2015, 7, 28049–28062.
Wang, H.; Yang, F.; Xiang, Y.; Ye, S.; Peng, X.; Song, J.; Qu, J.; Wong, W. J. Mater. Chem. A 2019, 7, 24191–24198.
Yan,C.; Barlow, S., Wang, Z.; Yan,H.; Jen, A.K.; Marder, S.R.; Zhan, X. Nat. Rev. Mater. 2018, 3,18003.
Luo,D.; Yang, W., Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G.F.; Watts, J.F.; Xu, Z.; Liu, T., Chen, K.; Ye, F.; Wu,P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang, W.; Friend, R.H.; Gong, Q.; Snaith, H.J.; Zhu, R. Science 2018, 360, 1442.
Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; Kanjanaboos, P.; Sun, J.P.; Lan, X.; Quan, L.-N.; Kim, D.-H.; Hill, I.G.; Maksymovych, P.; Sargent, E.H. Nat. Commun. 2015, 6, 7081.
Dai, S.-M.; Tian, H.-R.; Zhang, M.-L.; Xing, Z.; Wang, L.-Y.; Wang, X.; Wang, T.; Deng, L.-L.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. J. Power Sources 2017, 339, 27.
Liu,Y.; Mu, C.; Jiang, K.; Zhao, J.; Li, Y.; Zhang, L.; Li, Z.; Lai, J.Y.L.; Hu, H.; Ma, T.; Hu, R.; Yu, D.; Huang, X.; Tang, B.Z.; Yan, H. Adv. Mater. 2015, 27, 1015–1020.
Wu, J.; Huang, W.; Chang, Y.; Tsai, B.; Hsiao, Y.; Chang, C.; Chen, C.; Chen, C. J. Mater. Chem. A 2017, 5, 12811–12821.
Ye, T.; Jin, S.; Singh, R.; Kumar, M.; Chen, W.; Wang, D.; Zhang, X.; Li, W.; He, D. Sol. Energy, 2020, 201, 927–934.
Karuppuswamy, P.; Hanmandlu, C.; Boopathi, K.M.; Perumal, P.; Liu, C.-C. ;Chen, Y.-F.; Chang, Y.-C.; Wang, P.-C.; Lai, C.-S.; Chu, C.-W. Energy Mater. Sol. Cells 2017, 169, 78–85.
Liu, Z.; Wu, Y.; Zhang, Q.; Gao, X. J. Mater. Chem. A 2014, 4,17604–17622.
Heo, J. H.; Lee, S.; Jung, S.; Kwon, O.; Im, S. H. J. Mater. Chem. A, 2017, 39, DOI: 10.1039/C7TA06900F
Jung, Y.; Baeg, K.; Kim, D.; Someya, T.; Park, S.Y.; Synth. Met. 2009, 159, 2117–2121.
Guha, S.; Goodson, F.S.; Corson, L.J.; Saha, S. J. Am. Chem. Soc. 2012, 134, 13679–13691.
Bian, L.; Zhu, E.; Tang, J.; Tang, W.; Zhang, F. Prog. Polym. Sci. 2012, 37, 1292–1331.
Shustova, N.B.; McCarthy, B.D.; Dincӑ, M. J. Am. Chem. Soc. 2011, 133, 20126–20129.
Sick, T.; Hufnagel, A.G.; Kampmann, J.; Kondofersky, L.; Calik, M.; Rotter, J.M.; Evans, A.; Döblinger, M.; Herbert, S.; Peters, K.; Böhm, D.; Knochel, P.; Medina, D.D.; Fattakhova-Rohlfing, D.; Bein, T. J. Am. Chem. Soc. 2018, 140, 2085−2092.
Wang, X.-F.; Liu, H.-W.; Jiang, J.-X.; Qian, M.-P.; Qi, H.-L.; Gao, Q.; Zhang, C.-X. Anal. Chem. 2022, 94, 5441−5449.
Lin, H.-R.; Chen, S.-S.; Hu, H.-W.; Zhang, L.; Ma, T.-X.; Lai, J.Y.L.; Li, Z.-K.; Qin, A.-J.; Huang, X.-H., Tang, B.-Z.; Yan, H. Adv. Mater. 2016, 28, 38, 8546-8551.
Zhang, X.-F.; Liu, X.-P.; Ghadari, R.; Li, M.-H.; Zhou, Z.-A.; Ding, Y. Cai, M.-L.; Dai, S.-Y. ACS Appl. Mater. Interfaces 2021, 13, 10, 12322–12330.
Ke, W.-J.; Priyanka, P.; Vegiraju, S.; Stoumpos, C.C.; Spanopoulos, I.; Soe, C.M.M.; Marks, T. J.; Chen, M.-C.; Kanatzidis, M.G. J. Am. Chem. Soc. 2018, 140, 388−393.
Jiang, K.; Wu, F.; Yu, H.; Yao, Y.-Q.; Zhang, G.-Y.; Zhu, L.-N.; Yan, H. J. Mater. Chem. A, 2018, 6, 16868–16873.
Youn, J.-D.; Huang, P.-Y.; Huang, Y.-W.; Chen, M.-C.; Lin, Y.-J.; Huang, H.; Ortiz, R.P.; Stern, C.; Chung, M.-C.; Feng, C.-Y.; Chen, L.-H.; Facchetti, A.; Marks, T. J. Adv. Funct. Mater. 2012, 22, 48–60.
Wang, J.-L., Cui, Y.-B.; Xie, S.-Q.; Zhang, J.-Q.; Hu, D.-D.; Shuai, S.-H.; Zhang, C.; Ren, H.-J. Org. Lett. 2024, 26, 137−141
Shi, X.-Y.; Liu, T.-X.; Dou, Y.-J.; Hu, X.-D.; Liu, Y.-Y.; Wang, F.-F.; Wang, L.-Y.; Ren,Z.-J.; Chen, S.-S. Adv. Mater. 2024, 2402785
指導教授 姚學麟 陳銘洲(Yau, Shueh-Lin Chen, Ming-Chou) 審核日期 2024-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明