博碩士論文 108324030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.191.162.222
姓名 黃柏榮(Bo-Rong Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 自聚集錫膠系統的開發
(Development of self-assembly solder resin)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 此研究中,我們開發了一種助銲性環氧樹脂混合Sn58Bi銲料粉體的漿料,並於回銲過程中,依靠熔融銲料液滴的自聚集行為,形成銲點後,圍繞銲點周圍的環氧樹脂固化後形成底膠填充保護銲點,於製程中一步驟完成覆晶接合與底膠充填,我們將此新材料稱之為自聚集錫膠。
助銲性環氧樹脂對回銲過程中熔融銲料液滴的自聚集行為有極大的影響,因此選擇二羧酸化合物和環氧基的固化系統以確保銲料在回銲過程中有效去除表面氧化物並潤濕銲墊以形成銲點,並使用熱差式掃描量熱分析儀(DSC)分析各種二羧酸化合物-環氧單體系統的固化反應進程。此外也探討使用潛伏性催化劑調整環氧樹脂的固化過程,以降低環氧樹脂固化進程對自聚集銲點生成之影響。
從DSC動態掃描模式下的分析,發現銲料粉體與助銲劑所生成的羧酸錫鹽可影響環氧樹脂的固化進程且其與具路易斯鹼性的催化劑共同存在時將加速環氧樹脂固化反應進程。以化學分析電子光譜儀(ESCA),傅立葉轉換紅外光譜儀(FTIR)證明羧酸錫鹽的生成,以及從羧酸錫鹽結構推導其化學性質並建立其催化環氧樹脂固化進程的機制。
通過理解以上這些機制,我們成功配製了固化後機械性質良好且具備助銲性的環氧樹脂,並製備成自聚集錫膠進行初步的回銲測試。
通過應用分枝理論的計算,對自聚集錫膠形成自聚集銲點的過程進行最佳化。理論推導表明,該環氧樹脂固化系統的凝膠點轉化率約為0.78-0.8。推導出的凝膠點轉化率可以幫助確定DSC熱流曲線上固化反應放熱峰與銲料熔融吸熱峰的最佳相對位置,從而使環氧樹脂的固化進程對熔融銲料液滴自聚集的行為之影響降至最低。
為使自聚集錫膠應用於密集接點的覆晶接合,使用超細銲料粉體有其必要性,但在回流的早期階段,超細銲料粉末(2-8 μm)在熔化前往往會沉積和聚集,形成緻密結構,阻礙助銲性環氧樹脂完全潤濕銲料粉體表面和去除表面氧化物。因此通過在環氧樹脂初始固化過程中使含有雙胺基的單體與環氧單體反應生成微凝膠,於未熔融銲料粉體的堆積結構間創建空間,阻止粉體間彼此接近。通過應用分枝理論計算出凝膠點以確定在不形成大網絡結構的情況下可添加的最大雙胺單體量,以及利用DSC與流變儀證明微凝膠的生成。最終回銲測試表明,含有雙胺單體的樣品有效破壞了未熔化銲料顆粒的緻密堆積結構,使助銲性環氧樹脂能潤濕至銲料粉體的表面清除氧化物,使熔融銲料完全自聚集到銲墊上,而不含二胺單體的樣品則無法做到這一點。
在最佳化自聚集錫膠後,進行了回銲和可靠性測試。回銲測試顯示所有的LED樣品均正常工作,Sn58Bi銲料完全自聚集到銲墊上,沒有斷路或橋接。EDX分析確認界面形成了Au-Sn金屬間化合物(IMC),Ni擴散極少,環氧樹脂完全包覆銲點。推力測試表明平均強度為127 g,較使用傳統錫膏增強2.54倍。可靠性測試顯示剪切強度下降40-50%,但仍高於使用傳統錫膏回銲之樣品。經高溫高濕測試後樣品剪切強度下降歸因於環氧樹脂和銲點界面處分層以及環氧樹脂硬度下降。溫度循環測試後剪切強度下降歸因於界面接著處出現裂紋,這是由於熱膨脹係數差異導致。
摘要(英) In this study, we developed a slurry contained Sn58Bi solder powder and fluxing epoxy resin. During the reflow process, the molten solder droplets self-assemble to form solder joints, then epoxy resin surrounding formed solder joints cures to serve as underfill. This process achieves flip-chip bonding and underfilling in single step, and we term this new material self-assembly solder resin.
The fluxing epoxy resin significantly impacts the self-assembly behavior of molten solder droplets during reflow. Therefore, we selected a curing system based on dicarboxylic acid monomers and diepoxide monomer to ensure the effective removal of surface oxides of solder powder and wettability of molten solder on pads during reflow. We used differential scanning calorimetry (DSC) to analyze the curing reaction process of various dicarboxylic acid-epoxy monomer systems. Additionally, we explored using latent catalysts to adjust the curing process of the epoxy resin to minimize its’ impact on the formation of self-assembling solder joints.
Dynamic DSC analysis revealed that the tin carboxylate salts formed between the solder powder and the flux significantly affect the epoxy resin′s curing process. The coexisting of Lewis base catalyst and tin carboxylate salts will further accelerate the curing reaction. We used X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of tin carboxylate salts and deduced their chemical properties to establish the mechanism by which they catalyze the epoxy resin curing process. By understanding these mechanisms, we successfully formulated a fluxing epoxy resin with good mechanical properties after curing and creating a self-assembly solder resin for initial reflow tests.
Using branching theory calculations, we optimized the self-assembly process of the solder joints formed by self-assembly solder resin. The theoretical derivation indicated that the gelation conversion rate of this epoxy curing system is approximately 0.78-0.8. This gelation point conversion rate helps determine the optimal relative positions of the exothermic peak of curing reaction and the endothermic peak of the solder melting on the DSC thermogram, minimizing the impact of the epoxy resin curing process on the self-assembly behavior of molten solder droplets.
For the self-assembly solder resin to be applicable in fine pitch flip-chip bonding, the use of ultra-fine solder powder (2-8 μm) is necessary. However, during the early stages of reflow, ultra-fine solder powder tends to sediment and agglomerate before melting, forming dense structures that hinder the fluxing epoxy resin from fully wetting the powder surface and removing surface oxides. To address this, we reacted a diamine monomer with the epoxy monomer during the initial curing process to form microgels, creating space within the packed structure of the unmelt solder powder, preventing solder powder particles from approaching each other. Branching theory calculations determined the maximum amount of diamine monomer that can be added without forming a large network structure, and DSC and rheometer tests confirmed the formation of microgels. Final reflow tests showed that samples containing diamine monomers effectively disrupted the dense packing structure of the unmelt solder particles, allowing the fluxing epoxy resin to wet the solder powder surface and remove oxides. In contrast, samples without diamine monomers failed to achieve this.
After optimizing self-assembly solder resin, we conducted reflow and reliability tests. The reflow tests showed that all LED samples functioned normally, with Sn58Bi solder fully self-assembling onto the solder pads without open circuits or bridges. Energy-dispersive X-ray (EDX) analysis confirmed the formation of Au-Sn intermetallic compounds (IMC) at the interface, with minimal Ni diffusion, and the epoxy resin completely encapsulated the solder joints. The shear test showed an average strength of 127 g, 2.54 times higher than sample reflowed with traditional solder paste. Reliability tests indicated a 40-50% reduction in shear strength, still higher than that of samples reflowed with traditional solder paste. The decrease in shear strength after high-temperature and high-humidity testing was attributed to delamination at the epoxy resin-solder joint interface and a decrease in epoxy resin hardness. After temperature cycling tests, the reduction in shear strength was due to cracks at the interface, caused by differences in the coefficients of thermal expansion.
關鍵字(中) ★ 半導體封裝 關鍵字(英) ★ semiconductor package
論文目次 中文摘要 i
Abstract iii
Table of contents vii
List of figures ix
List of tables xii
Chapter 1: Introduction 1
1.1 Challenges of solder bumping、flip chip bonding & underfilling、electrical conductive adhesive (ECA) process 1
1.2 Materials of self-assembly solder resin 6
1.3 Flip chip bonding and underfilling in one step by applying self-assembly solder resin 13
1.4 Parameters of forming defect less self-assembly solder joints 15
1.5 Introduction of Branching theory 17
Chapter 2: Motivation 19
2.1 Development of self-assembly solder resin 19
Chapter 3: Experimental procedure 22
3.1 Preparation of self-assembly solder resin 22
3.2 Analysis and test 23
Chapter 4: Development of epoxy flux 27
4.1 Epoxy resin curing process control 27
4.2 Influence of tin carboxylate salts on epoxy curing extent 38
4.3 Validation of one-step joining and underfilling by applying self-assembly solder resin 51
Chapter 5: Optimization of self-assembly solder resin with Branching theory 52
5.1 Branching Theory: Building model with statistical methods 53
5.2 Optimization of self-assembly process of molten solder with gel point identification in epoxy resin curing system 56
5.3 Dense packing structure of ultrafine solder particles disrupted with microgel at initial stage of reflow 58
5.4 Reflow test with optimized self-assembly solder resin 69
Chapter 6: Summary 74
Reference 78
參考文獻 1. Datta, M., Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: An overview. Journal of Micromanufacturing, 2020. 3(1): p. 69-83.
2. Malik, M.H., et al., Flip chip bonding on stretchable printed substrates; the effects of stretchable material and chip encapsulation. Flexible and Printed Electronics, 2023. 8(1): p. 015004.
3. Hirabayashi, M., et al., Fine Pitch Bonding for High Density Interconnects. 2022, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
4. Wakeel, S., Comparison of performance of no-clean and water-soluble fluxes in fine-pitch flip-chip package. 2021, University of Malaya (Malaysia).
5. KUBOYAMA, T., Introduction to Underfill Resin for Portable Device. Nippon Gomu Kyokaishi, 2011. 84(10): p. 313-320.
6. He, Y., et al., Thermal characterization of an epoxy-based underfill material for flip chip packaging. Thermochimica Acta, 2000. 357: p. 1-8.
7. Shi, X., et al., Investigation of effect of temperature and strain rate on mechanical properties of underfill material by use of microtensile specimens. Polymer Testing, 2002. 21(6): p. 725-733.
8. Wan, Y.-J., et al., Recent advances in polymer-based electronic packaging materials. Composites Communications, 2020. 19: p. 154-167.
9. Aradhana, R., S. Mohanty, and S.K. Nayak, A review on epoxy-based electrically conductive adhesives. International Journal of Adhesion and Adhesives, 2020. 99.
10. Tan, P., et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nature communications, 2022. 13(1): p. 358.
11. Li, L. and J. Morris, An introduction to electrically conductive adhesives. Int. J. Microelectronic Packaging, 1998. 1(3): p. 159-175.
12. Morancho, J.M., et al., Dual curing of an epoxy resin with dicarboxylic acids. Journal of Thermal Analysis and Calorimetry, 2020. 142(2): p. 607-615.
13. Vidil, T., et al., Control of reactions and network structures of epoxy thermosets. Progress in Polymer Science, 2016. 62: p. 126-179.
14. Clayden, J., N. Greeves, and S. Warren, Organic chemistry. 2012: Oxford University Press, USA.
15. Pascault, J.P. and R.J. Williams, General concepts about epoxy polymers. Epoxy polymers: new materials and innovations, 2010: p. 1-12.
16. Panda, H., Epoxy resins technology handbook (manufacturing process, synthesis, epoxy resin adhesives and epoxy coatings): Manufacturing process of epoxy resins, manufacturing process of epoxy resins, making of epoxy resins, process for manufacture of epoxy resins, epoxy resin manufacturing plant, epoxy resin plant, epoxy resin production plant, epoxy resin manufacture, epoxy resin manufacturing unit, epoxy resin production, epoxy resins in industry, manufacture of epoxy resins. 2016: Asia Pacific Business Press Inc.
17. Dell′Erba, I.E. and R.J.J. Williams, Homopolymerization of diepoxide monomer initiated by 4‐(dimethylamino) pyridine. Polymer Engineering & Science, 2006. 46(3): p. 351-359.
18. Wang, B., et al., Preparation of Epoxy Resin with Disulfide-Containing Curing Agent and Its Application in Self-Healing Coating. Materials, 2023. 16(12): p. 4440.
19. Wang, Z., et al., Curing Behavior and Thermomechanical Performance of Bioepoxy Resin Synthesized from Vanillyl Alcohol: Effects of the Curing Agent. Polymers, 2021. 13(17): p. 2891.
20. Huang, Z., et al., Thiourea modified low molecular polyamide as a novel room temperature curing agent for epoxy resin. RSC advances, 2022. 12(28): p. 18215-18223.
21. Gao, Y., et al., Microstructure and Properties of Electromigration of Sn58Bi/Cu Solder Joints with Different Joule Thermal Properties. Metals, 2023. 13(8): p. 1475.
22. Zhang, Q., H. Zou, and Z.-F. Zhang, Improving tensile and fatigue properties of Sn–58Bi/Cu solder joints through alloying substrate. Journal of materials research, 2010. 25(2): p. 303-314.
23. Lee, C.-J., et al., Electromigration Behavior of Sn58Bi and Sn58Bi Epoxy Solder Joint. Science of Advanced Materials, 2020. 12(4): p. 538-543.
24. Coussot, P., A. Leonov, and J.-M. Piau, Rheology of concentrated dispersed systems in a low molecular weight matrix. Journal of Non-Newtonian Fluid Mechanics, 1993. 46(2-3): p. 179-217.
25. Tseng, W.J. and C.-N. Chen, Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions. Materials Science and Engineering: A, 2003. 347(1-2): p. 145-153.
26. Zhang, S., Y. Zhang, and H. Wang, Effect of particle size distributions on the rheology of Sn/Ag/Cu lead-free solder pastes. Materials & Design, 2010. 31(1): p. 594-598.
27. Baek, J.-W., et al., Chemo-rheological characteristics of a self-assembling anisotropic conductive adhesive system containing a low-melting point solder. Microelectronic Engineering, 2010. 87(10): p. 1968-1972.
28. Tadros, T.F., Rheology of dispersions: principles and applications. 2011: John Wiley & Sons.
29. Sushumna, I., R. Gupta, and E. Ruckenstein, Effective dispersants for concentrated, nonaqueous suspensions. Journal of materials research, 1992. 7(10): p. 2884-2893.
30. Guzmán, D., et al., New catalysts for diglycidyl ether of bisphenol A curing based on thiol–epoxy click reaction. European Polymer Journal, 2014. 59: p. 377-386.
31. Arimitsu, K., et al., Imidazole derivatives as latent curing agents for epoxy thermosetting resins. Materials Letters, 2015. 161: p. 408-410.
32. Kudo, K., et al., Imidazole‐type thermal latent curing agents with high miscibility for one‐component epoxy thermosetting resins. Journal of Polymer Science Part A: Polymer Chemistry, 2016. 54(17): p. 2680-2688.
33. Altuna, F.I., C.E. Hoppe, and R.J.J. Williams, Epoxy Vitrimers: The Effect of Transesterification Reactions on the Network Structure. Polymers (Basel), 2018. 10(1).
34. Poutrel, Q.-A., et al., Dicarboxylic acid-epoxy vitrimers: influence of the off-stoichiometric acid content on cure reactions and thermo-mechanical properties. Polymer Chemistry, 2020. 11(33): p. 5327-5338.
35. Fukumoto, S., et al., Development of Polyester-Modified Epoxy Resins for Self-Organization Soldering. Materials Transactions, 2019. 60(6): p. 858-864.
36. Yasuda, K., et al., New Process of Self-Organized Interconnection in Packaging Using Conductive Adhesive with Low Melting Point Filler. Japanese Journal of Applied Physics, 2004. 43(4S).
37. Yasuda, K., K. Ohta, and K. Fujimoto, Influence of Resin Viscosity and Filler Volume on Self-Organized Micro Interconnection. Materials Science Forum, 2006. 512: p. 367-372.
38. Ohta, K., et al., Movement of solder fillers because of the unevenness of interfacial tension in self-organization assembly process. Journal of Physics: Conference Series, 2009. 165.
39. Yasuda, K., Self-Assembly Process for Array Interconnects Pattern Using Solder/Polymer Hybrid Materials. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011. 1(12): p. 1895-1900.
40. Yamaguchi, A., et al., The Influence of Resin Coverage on Reliability for Solder Joints Formed by One-Pass Reflow Using Resin Reinforced Low Temperature Solder Paste, in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). 2017. p. 1398-1404.
41. Fukumoto, S., et al., Solderability Using Thermoset Resin-Based Solder Pastes Covered with Thermoplastic Resin Film. Materials Transactions, 2018. 59(8): p. 1359-1366.
42. Yasuda, K. and M. Ishida. Self-linking mechanism of micro solder particles dispersion in liquidus polymer. in 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC). 2015. IEEE.
43. Harris, T.E., The theory of Branching processes. Vol. 6. 1963: Springer Berlin.
44. Li, Y. and D. Goyal, 3D microelectronic packaging: from fundamentals to applications. Vol. 57. 2017: Springer.
45. Association, S.I., International technology roadmap for semiconductors. http://www. itrs. net, 2009.
46. Barton, J.M., The application of differential scanning calorimetry (DSC) to the study of epoxy resin curing reactions, in Epoxy resins and composites I. 2005, Springer. p. 111-154.
47. Tao, Q., G. Pinter, and T. Krivec, Influence of cooling rate and annealing on the DSC Tg of an epoxy resin. Microelectronics Reliability, 2017. 78: p. 396-400.
48. Morancho, J.M., et al., Curing of off-stoichiometric amine–epoxy thermosets. Journal of Thermal Analysis and Calorimetry, 2018. 133(1): p. 519-527.
49. Ramli, M.I.I., et al., Formation and Growth of Intermetallic Compounds in Lead-Free Solder Joints: A Review. Materials, 2022. 15(4): p. 1451.
50. Kang, H., S.H. Rajendran, and J.P. Jung, Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics. Metals, 2021. 11(2): p. 364.
51. Zou, H., Q. Zhang, and Z. Zhang, Transition of Bi embrittlement of SnBi/Cu joint couples with reflow temperature. Journal of Materials Research, 2011. 26(3): p. 449-454.
52. Tsuji, H. and H. Hattori, Oxide Surfaces that Catalyse an Acid–Base Reaction with Surface Lattice Oxygen Exchange: Evidence of Nucleophilicity of Oxide Surfaces. ChemPhysChem, 2004. 5(5): p. 733-736.
53. Bakar, W.A.W.A., et al., Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel. Fuel processing technology, 2012. 101: p. 78-84.
54. Grant, J.T., et al., Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chemical reviews, 2017. 118(5): p. 2769-2815.
55. Filopoulou, A., S. Vlachou, and S.C. Boyatzis, Fatty Acids and Their Metal Salts: A Review of Their Infrared Spectra in Light of Their Presence in Cultural Heritage. Molecules, 2021. 26(19): p. 6005.
56. Deng, Y. and G.C. Martin, Modeling diffusion during thermoset cure: an approach based on dielectric analysis. Macromolecules, 1994. 27(18): p. 5141-5146.
57. DUŠEK, K. and L. MATĚJKA, Transesterification and gelation of polyhydroxy esters formed from diepoxides and dicarboxylic acids. 1984, ACS Publications.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2024-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明