參考文獻 |
References
1. Z. Chen, J. Zhang, S. Wang, C.P. Wong, “Challenges and prospects for advanced packaging”, Fundamental Research, 2023.
2. Mika Kimura, Yu Aoki, Lee Sangchul, Akitoshi Tanimoto, Mamoru Sasaki, “Low temperature curable photosensitive dielectric material with high resolution”, Journal of Photopolymer Science and Technology, 30(2), 153-155, 2017.
3. Fukushima, T., Alam, A., Hanna, A., Jangam, S. C., Bajwa, A. A., & Iyer, S. S. “Flexible hybrid electronics technology using die-first FOWLP for high-performance and scalable heterogeneous system integration.” IEEE Transactions on Components, Packaging and Manufacturing Technology 8.10, 1738-1746, 2018.
4. Podpod, A., Phommahaxay, A., Bex, P., Slabbekoorn, J., Bertheau, J., Salahoueldhadj, A., ... & Arnold, K. “Advances in temporary carrier technology for high-density fan-out device build-up.” 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) (pp. 340-345), May 2019.
5. D. Yu, 1st ed, 3D Packaging Technology with Through Silicon Vias, Publishing House of Electronics Industry, Beijing, 2021.
6. Arriola, E. R., Ubando, A. T., Gonzaga, J. A., & Lee, C. C. “Wafer-level chip-scale package lead-free solder fatigue: A critical review.” Engineering Failure Analysis, 144, 106986, 2023.
7. Chang, K. C., & Chiang, K. N. “Solder joint reliability analysis of a wafer‐level CSP assembly with cu studs formed on solder pads.” Journal of the Chinese Institute of Engineers, 26(4), 467-479, 2003.
8. Nagapurkar, Prashant, and Sujit Das. “Economic and embodied energy analysis of integrated circuit manufacturing processes.” Sustainable Computing: Informatics and Systems, 35, 100771, 2022.
9. Chandana, Y. Venkata Naga, and N. Venu Kumar. “Drop test analysis of ball grid array package using finite element methods.” Materials Today: Proceedings, 64, 675-679, 2022.
10. Wong, Ee-Hua, S. K. W. Seah, and V. P. W. Shim. “A review of board level solder joints for mobile applications.” Microelectronics Reliability, 48.11-12, 1747-1758, 2008.
11. Che, F. X., Ho, D., Ding, M. Z., & MinWoo, D. R. “Study on process induced wafer level warpage of fan-out wafer level packaging.” 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (pp. 1879-1885), May 2016.
12. Takekoshi, M., Nishido, K., Okada, Y., Suzuki, N., & Nonaka, T. “Warpage suppression during FO-WLP fabrication process.” 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (pp. 902-908), May 2017.
13. Chen, C., Yu, D., Wang, T., Xiao, Z., & Wan, L. “Warpage prediction and optimization for embedded silicon fan-out wafer-level packaging based on an extended theoretical model.” IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(5), 845-853, 2019.
14. Braun, T.; Becker, K.-F.; Hoelck, O.; Voges, S.; Kahle, R.; Dreissigacker, M.; Schneider-Ramelow, M. “Fan-Out Wafer and Panel Level Packaging as Packaging Platform for Heterogeneous Integration”. Micromachines, 10, 342, 2019.
15. Chaware, R., Hariharan, G., Lin, J., Singh, I., O′Rourke, G., Ng, K., ... & Cheng, S. K. “Assembly challenges in developing 3D IC package with ultra-high yield and high reliability”, In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (pp. 1447-1451), May 2015.
16. Chen, Y., Niu, D., Xie, Y., & Chakrabarty, K. “Cost-effective integration of three-dimensional (3D) ICs emphasizing testing cost analysis”, In 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 471-476), November 2010.
17. Chen, C. K., Warner, K., Yost, D. R. W., Knecht, J. M., Suntharalingam, V., Chen, C. L., ... & Keast, C. L. “Scaling three-dimensional SOI integrated-circuit technology.” In 2007 IEEE International SOI Conference (pp. 87-88), October 2007.
18. Salvi, Swapnil S., and Ankur Jain. “A review of recent research on heat transfer in three-dimensional integrated circuits (3-D ICs).” IEEE Transactions on Components, Packaging and Manufacturing Technology, 11.5, 802-821, 2021.
19. Alam, S. M., Jones, R. E., Pozder, S., & Jain, A. “Die/wafer stacking with reciprocal design symmetry (RDS) for mask reuse in three-dimensional (3D) integration technology.” 2009 10th International Symposium on Quality Electronic Design. IEEE, March 2009.
20. Liu, Shen, and Yong Liu. “Modeling and simulation for microelectronic packaging assembly: manufacturing, reliability and testing”. John Wiley & Sons, 2011.
21. Xu, Y., Xian, J., Stoyanov, S., Bailey, C., Coyle, R. J., Gourlay, C. M., & Dunne, F. P. “A multi-scale approach to microstructure-sensitive thermal fatigue in solder joints.” International Journal of Plasticity, 155, 103308, 2022.
22. Qian, Zhengfang, Wei Ren, and Sheng Liu. “A damage coupling framework of unified viscoplasticity for the fatigue of solder alloys.” 162-168, 1999.
23. Nai, S. M. L., J. Wei, and M. Gupta. “Interfacial intermetallic growth and shear strength of lead-free composite solder joints.” Journal of Alloys and Compounds, 473.1-2, 100-106, 2009.
24. Laurila, Tomi, Vesa Vuorinen, and J. K. Kivilahti. “Interfacial reactions between lead-free solders and common base materials.” Materials Science and Engineering: R: Reports, 49.1-2, 1-60, 2005.
25. Peng, Weiqun, Eduardo Monlevade, and Marco E. Marques. “Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu.” Microelectronics Reliability, 47.12, 2161-2168, 2007.
26. Tan, Chi Ying, Mohd Arif Anuar Mohd Salleh, and Norainiza Saud. “The study of interfacial reaction between SnAgCu (SAC) lead-free solder alloys and copper substrate: a short review.” IOP Conference Series: Materials Science and Engineering. Vol. 864. No. 1. IOP Publishing, 2020.
27. Tu, King-Ning, and K. Zeng. “Tin–lead (SnPb) solder reaction in flip chip technology.” Materials science and engineering: R: reports, 34.1, 1-58, 2001.
28. Li, J. F., P. A. Agyakwa, and C. M. Johnson. “Effect of trace Al on growth rates of intermetallic compound layers between Sn-based solders and Cu substrate.” Journal of Alloys and Compounds, 545, 70-79, 2012.
29. Chen, B. L., and G. Y. Li. “Influence of Sb on IMC growth in Sn–Ag–Cu–Sb Pb-free solder joints in reflow process.” Thin solid films, 462, 395-401, 2004.
30. Pang, J. H., Xu, L., Shi, X. Q., Zhou, W., & Ngoh, S. L. “Intermetallic growth studies on Sn-Ag-Cu lead-free solder joints.” Journal of Electronic Materials, 33, 1219-1226, 2004.
31. Mayappan, R., Yahya, I., Ghani, N. A. A., & Hamid, H. A “The effect of adding Zn into the Sn–Ag–Cu solder on the intermetallic growth rate.” Journal of Materials Science: Materials in Electronics, 25, 2913-2922, 2014.
32. Leong, Y. M., Haseeb, A. S. M. A., Nishikawa, H., & Mokhtari, O. “Microstructure and mechanical properties of Sn–1.0 Ag–0.5 Cu solder with minor Zn additions.” Journal of Materials Science: Materials in Electronics, 30, 11914-11922, 2019.
33. Jayaram, V., Gupte, O., Bhangaonkar, K., & Nair, C. “A Review of Low Temperature Solders in Microelectronics Packaging.” IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023.
34. Gupte, O., Murtagian, G., Tummala, R., & Smet, V. “Thermal aging reliability of socketable, surface-modified solder BGAs with and without polymer collars.” 2020 IEEE 70th Electronic Components and Technology Conference (ECTC). IEEE, June 2020.
35. Silva, Bismarck Luiz, Amauri Garcia, and José Eduardo Spinelli. “Complex eutectic growth and Bi precipitation in ternary Sn-Bi-Cu and Sn-Bi-Ag alloys.” Journal of Alloys and Compounds, 691, 600-605, 2017.
36. Božinović, K. N., Manasijević, D. M., Balanović, L. T., Gorgievski, M. D., Stamenković, U. S., Marković, M. S., & Mladenović, Z. D. “Study of microstructure, hardness and thermal properties of Sn-Bi alloys.” Hemijska industrija, 75.4, 227-239, 2021.
37. Wang, F., Huang, Y., Zhang, Z., & Yan, C. “Interfacial reaction and mechanical properties of Sn-Bi solder joints.” Materials, 10.8, 920, 2017.
38. Myung, W. R., Ko, M. K., Kim, Y., & Jung, S. B. “Effects of Ag content on the reliability of LED package component with Sn–Bi–Ag solder.” Journal of Materials Science: Materials in Electronics, 26, 8707-8713, 2015.
39. Vandevelde, B., Nawghane, C., Labie, R., Lauwaert, R., & Werkhoven, D. “Enhanced processability and thermal fatigue reliability with low melting point SnBi solder alloy LMPA-Q.” International Electronic Packaging Technical Conference and Exhibition. Vol. 85505. American Society of Mechanical Engineers, October 2021.
40. Zhang, Liang, Lei Sun, and Yong-huan Guo. “Microstructures and properties of Sn58Bi, Sn35Bi0.3Ag, Sn35Bi1.0Ag solder and solder joints.” Journal of Materials Science: Materials in Electronics, 26, 7629-7634, 2015.
41. Young, K., Aspandiar, R., Badwe, N., Walwadkar, S., Lee, Y. W., & Lee, T. K. “Thermal cycling induced interconnect stability degradation mechanism in low melting temperature solder joints.” 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). IEEE, May 2022.
42. Chen, Y., Wang, C., Gao, Y., Gao, Z., & Liu, Z. Q. “Microstructural evolution and failure analysis of Sn–Bi57–Ag0.7 solder joints during thermal cycling.” Journal of Materials Science: Materials in Electronics, 1-11, 2022.
43. Shimizu, K., Nakanishi, T., Karasawa, K., Hashimoto, K., & Niwa, K. “Solder joint reliability of indium-alloy interconnection.” Journal of electronic materials, 24, 39-45, 1995.
44. Liu, Y., and K. N. Tu. “Low melting point solders based on Sn, Bi, and In elements.” Materials Today Advances, 8, 100115, 2020.
45. Choi, Won Kyoung, and Hyuck Mo Lee. “Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5 Ag solder alloy and Cu substrate.” Journal of Electronic Materials, 29, 1207-1213, 2000.
46. Lee, T. Y., Choi, W. J., Tu, K. N., Jang, J. W., Kuo, S. M., Lin, J. K., ... & Kivilahti, J. K. “Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu.” Journal of Materials Research, 17.2, 291-301, 2002.
47. Yuan, Y., Li, D., Guan, Y., Seifert, H. J., & Moelans, N. “Investigation of the diffusion behavior in Sn-xAg-yCu/Cu solid state diffusion couples.” Journal of Alloys and Compounds, 686, 794-802, 2016.
48. Guo, F., Choi, S., Lucas, J. P., & Subramanian, K. N. “Microstructural characterisation of reflowed and isothermally‐aged Cu and Ag particulate reinforced Sn‐3.5Ag composite solders.” Soldering & surface mount technology, 13.1, 7-18, 2001.
49. Liu, Xiangdong, Siliang He, and Hiroshi Nishikawa. “Low temperature solid-state bonding using Sn-coated Cu particles for high temperature die attach.” Journal of Alloys and Compounds, 695, 2165-2172, 2017.
50. Chen, K., Wang, D., Ling, H., Hu, A., Li, M., Zhang, W., & Cao, L. “Effects of Sn grain size on intermetallic compounds formation in 5 µm diameter Cu/Sn pillar bumps.” Journal of Materials Science: Materials in Electronics, 29, 19484-19490, 2018.
51. Belhadi, M. E. A., Hamasha, S. D., Alahmer, A., Zhao, R., Prorok, B. C., & Alavi, S. “The impact of Bi content on the coarsening kinetics of IMC particles and creep deformation under thermal cycling.” Journal of Electronic Materials, 53.1, 380-393, 2024.
52. Lai, Y., Hu, X., Li, Y., & Jiang, X. “Influence of Bi addition on pure Sn solder joints: interfacial reaction, growth behavior and thermal behavior.” Journal of Wuhan University of Technology-Mater. Sci., Ed. 34.3, 668-675, 2019.
53. Kang, T. Y., Xiu, Y. Y., Liu, C. Z., Hui, L., Wang, J. J., & Tong, W. P. “Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect.” Journal of Alloys and Compounds, 509.5, 1785-1789, 2011.
54. Hu, X., Li, Y., Li, K., & Min, Z. “Effect of Bi segregation on the asymmetrical growth of Cu-Sn intermetallic compounds in Cu/Sn-58Bi/Cu sandwich solder joints during isothermal aging.” Journal of electronic materials, 42, 3567-3572, 2013.
55. Paul, A., C. Ghosh, and W. J. Boettinger. “Diffusion parameters and growth mechanism of phases in the Cu-Sn system.” Metallurgical and materials transactions A, 42, 952-963, 2011.
56. Greene, J. E. “Thin film nucleation, growth, and microstructural evolution: an atomic scale view.” Handbook of deposition technologies for films and coatings. William Andrew Publishing, 2010. 554-620.
57. Gordon, Péter, and Tamás Hurtony. “Investigation of the wetting properties of Cu6Sn5 intermetallic compound.” 2015 38th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2015.
58. Dybkov, Vasiliĭ Ivanovich. “Reaction diffusion and solid state chemical kinetics.” 1-334, 2010.
59. Tu, King-Ning, and R. D. Thompson. “Kinetics of interfacial reaction in bimetallic Cu-Sn thin films.” Acta Metallurgica, 30.5, 947-952, 1982.
60. Chopra, R., M. Ohring, and R. S. Oswald. “Low temperature compound formation in CuSn thin film couples.” Thin Solid Films, 94.4, 279-288, 1982.
61. Ma, X., Wang, F., Qian, Y., & Yoshida, F. “Development of Cu–Sn intermetallic compound at Pb-free solder/Cu joint interface.” Materials Letters, 57.22-23, 3361-3365, 2003.
62. Tang, W. M., He, A. Q., Qi, L., & Ivey, D. G. “Solid state interfacial reactions in electrodeposited Cu/Sn couples.” Transactions of nonferrous metals society of China, 20.1, 90-96, 2010.
63. Yang, T. L., Yu, J. J., Shih, W. L., Hsueh, C. H., & Kao, C. R. “Effects of silver addition on Cu–Sn microjoints for chip-stacking applications.” Journal of alloys and compounds, 605, 193-198, 2014.
64. Labie, Riet, Wouter Ruythooren, and Jan Van Humbeeck. “Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions.” Intermetallics, 15.3, 396-403, 2007.
65. Sanabria, Charlie. “A new understanding of the heat treatment of Nb-Sn superconducting wires.” PhD Thesis. The Florida State University, 2017.
66. Dyson, B. F., T. R. Anthony, and D. Turnbull. “Interstitial diffusion of copper in tin.” Journal of Applied Physics, 38.8, 3408-3408, 1967.
67. Liu, P., Wang, S., Li, D., Li, Y., & Chen, X. Q. “Fast and huge anisotropic diffusion of Cu (Ag) and its resistance on the Sn self-diffusivity in solid β–Sn.” Journal of Materials Science & Technology, 32.2, 121-128, 2016.
68. Shang, S. L., Zhou, B. C., Wang, W. Y., Ross, A. J., Liu, X. L., Hu, Y. J., ... & Liu, Z. K. “A comprehensive first-principles study of pure elements: vacancy formation and migration energies and self-diffusion coefficients.” Acta Materialia, 109, 128-141, 2016. |