博碩士論文 111223032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:52.14.255.189
姓名 林昀築(Yun-Chu Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以Mn3O4及有機金屬骨架衍生CoS2修飾南瓜衍生碳材作為鋰(鈉)離子電池負極材料之應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本論文分為兩部分,第一部分研究南瓜衍生碳材的碳化過程、KOH活化劑含量和活化鍛燒溫度,旨在找出最佳條件以得到南瓜衍生活化碳材PAC-4-6。隨後,利用含浸法將過渡金屬氧化物Mn3O4修飾於PAC-4-6,合成出Mn3O4@PAC-4-6複合材料,並探討其作為鋰(鈉)離子電池負極材料的應用。經XPS與TEM mapping分析顯示,PAC-4-6具有微量的氮、硫和氧元素,達到異原子自摻雜的效果。實驗結果顯示,Mn3O4(30)@PAC-4-6具有最佳的電化學表現,在鋰離子電池系統中以電流密度0.1 A/g進行充放電循環測試,經過70圈後能達到879.8 mAh/g優異電容量,另外在鈉離子系統中以電流密度0.05 A/g進行充放電循環測試,經過200圈後,電容量穩定保持在180.1 mAh/g,顯示此材料具有良好的電性表現。
第二部分的研究中,以ZIF-67作為前驅物,經H2/Ar混合氣體鍛燒處理後,Co2+被還原成Co奈米粒子,得到Co@C,再與親水性PAC-4-6混合進行硫化反應,最終合成出二硫化鈷修飾生質碳材CoS2@PAC-4-6,並應用於鋰離子電池的負極材料。添加PAC-4-6生質碳材不僅提升材料的導電性,且有效緩解了CoS2在循環過程中體積膨脹問題。在鋰離子電池系統中以電流密度0.1 A/g進行充放電循環測試,經過240圈後,達到710.3 mAh/g。這表明材料具有良好的循環穩定性。
摘要(英) This thesis is divided into two parts. The first part investigates the carbonization process of pumpkin-derived carbon material, KOH activator content, and the activation calcination temperature, aiming to identify the optimal conditions to obtain the pumpkin-derived activated carbon material PAC-4-6. Mn3O4 is incorporated into PAC-4-6 using an impregnation method, synthesizing Mn3O4@PAC-4-6 composite material, which is evaluated as an anode material for lithium and sodium ion batteries. XPS and TEM mapping analyses show that PAC-4-6 contains trace amounts of nitrogen, sulfur, and oxygen, indicating heteroatom self-doping. Experimental results demonstrate that Mn3O4(30)@PAC-4-6 exhibits excellent electrochemical performance, achieving a capacity of 879.8 mAh/g after 70 cycles at 0.1 A/g in lithium-ion batteries, and maintaining a stable capacity of 180.1 mAh/g after 200 cycles at 0.05 A/g in sodium-ion batteries.
The second part uses ZIF-67 as a precursor, which is calcined in a H2/Ar mixed gas to reduce Co2+ to Co nanoparticles, forming Co@C. This is mixed with hydrophilic PAC-4-6 and subjected to a sulfidation reaction to synthesize CoS2@PAC-4-6, applied as an anode material for lithium-ion batteries. Adding PAC-4-6 enhances conductivity and mitigates volume expansion of CoS2 during cycling. The lithium-ion battery achieves a specific capacity of 710.3 mAh/g after 240 cycles at 0.1 A/g, indicating excellent cycling stability.
關鍵字(中) ★ 生質碳材
★ 有機金屬骨架材料
★ 鋰(鈉)離子電池
★ 過渡金屬材料
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
謝誌 iii
目錄 v
圖目錄 xi
表目錄 xix
第一章 緒論 1
1-1 前言 1
1-2 鋰離子電池 2
1-2-1 鋰離子電池正極材料 4
1-2-2 鋰離子電池負極材料 7
1-2-3 鋰離子電池之電解液 12
1-3 鈉離子電池 14
1-4 生質碳材 16
1-5生質碳材性能的改進策略 18
1-5-1 熱裂解法(Pyrolysis) 19
1-5-2 水熱法(Hydrothermal method) 20
1-5-3 活化法(Activation method) 20
1-5-4 模板法(Template method) 24
1-5-5 異原子摻雜(Heteroatoms doping) 25
1-5-6 負載過渡金屬化合物(Loading of transition metal compounds) 27
1-6 有機金屬骨架 29
1-6-1 有機金屬骨架形成 29
1-6-2 類沸石咪唑骨架材料 32
1-6-3 類沸石咪唑骨架材料-67 34
1-6-4 類沸石咪唑骨架材料-67衍生物應用於負極材料 38
1-7 研究動機 42
第二章 實驗藥品與儀器原理 43
2-1 實驗藥品 43
2-2 第壹部分之負極材料製備 45
2-2-1 南瓜衍生碳材(Pumpkin-Derived Carbon, PC) 45
2-2-2 利用活化劑氫氧化鉀(KOH)活化南瓜衍生碳材 46
2-3-3 利用含浸法合成Mn3O4@PAC-4-6負極材料 48
2-3 第貳部分之負極材料製備 49
2-3-1 ZIF-67合成 49
2-3-2 製備有機金屬骨架衍生之複合材CoS2@PAC-4-6 49
2-4 電化學測試之材料製備 51
2-4-1 負極極片製作 51
2-4-2 正極極片製作 51
2-4-3 硬幣型2032型電池組裝 52
2-4-4 定(變)電流充放電循環穩定性測試 53
2-4-5 循環伏安法(CV) 54
2-4-6 電化學阻抗分析(EIS) 54
2-5 實驗鑑定儀器 55
2-6 材料鑑定儀器之原理 57
2-6-1 X射線粉末繞射(XRD) 57
2-6-2 拉曼光譜分析儀(Raman Spectroscopy) 58
2-6-3 氮氣等溫吸脫附曲線、表面積與孔洞性質鑑定(BET) 59
2-6-4 熱重分析儀(TGA) 64
2-6-5 掃描式電子顯微鏡(SEM) 64
2-6-6 穿透式電子顯微鏡(TEM) 65
2-6-7 X射線光電子能譜儀(XPS) 66
2-6-8 元素分析儀(EA) 67
2-6-9 感應耦合電漿質譜儀(ICP-MS) 68
2-6-10 電化學阻抗譜(EIS) 69
2-6-11 循環伏安法(Cyclic Voltammetry, CV) 71
第三章 結果與討論 72
3-1 材料鑑定 72
3-1-1 大角度X光繞射分析(WXRD) 72
3-1-2 拉曼光譜分析(Raman) 75
3-1-3 氮氣吸脫附結果分析(BET) 78
3-1-4 熱重分析(TGA) 83
3-1-5 元素分析(EA)及感應電漿耦合質譜(ICP-MS)分析 84
3-1-6 X光電子能譜(XPS)分析 85
3-1-7 掃描式電子顯微鏡(SEM)形貌鑑定 88
3-1-8 穿透式電子顯微鏡(TEM)結果分析 94
3-2 材料於鋰離子電池半電池之電化學測試 101
3-2-1 循環伏安法(CV)分析 101
3-2-2 充放電曲線之分析 102
3-2-3 電性分析 104
3-2-4 交流阻抗分析 111
3-2-5 電容貢獻度計算 114
3-2-6 循環後的SEM和TEM圖 117
3-3材料於鈉離子電池半電池之電化學測試 120
3-3-1 循環伏安曲線及充放電曲線之分析 120
3-3-2 電性分析 121
3-3-3 交流阻抗分析 123
3-3-4 電容貢獻度計算 124
3-3-5 全電池分析 128
3-4 相關文獻比較 130
第四章 結果與討論 131
4-1 材料鑑定 131
4-1-1 大角度X光繞射圖譜分析(WXRD) 131
4-1-2 拉曼光譜分析(Raman) 132
4-1-3 氮氣吸脫附結果分析(BET) 134
4-1-4 熱重分析(TGA) 137
4-1-5 元素分析(EA)分析 138
4-1-6 X光電子能譜(XPS)分析 139
4-1-7 掃描式電子顯微鏡(SEM)之結果分析 142
4-1-8 穿透式電子顯微鏡(TEM)之結果分析 144
4-2 材料之電化學測試 148
4-2-1 循環伏安法(CV)分析 148
4-2-2 充放電曲線之分析 149
4-2-3 電性分析 150
4-2-4 交流阻抗分析 154
4-2-5 電容貢獻度計算 156
第五章 結論 160
參考文獻 162
參考文獻 1. Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). Thelithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292–308.
2. Long, W., Fang, B., Ignaszak, A., Wu, Z., Wang, Y.-J., & Wilkinson, D. (2017). Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chemical Society Reviews, 46(23), 7176–7190.
3. Liu, C., Li, F., Ma, L.-P., & Cheng, H.-M. (2010). Advanced Materials for Energy Storage. Advanced Materials, 22(8), E28–E62.
4. Shao, Y., El-Kady, M. F., Sun, J., Li, Y., Zhang, Q., Zhu, M., Wang, H., Dunn, B., & Kaner, R. B. (2018). Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 118(18), 9233–9280.
5. Li, J., Du, Z., Ruther, R. E., AN, S. J., David, L. A., Hays, K., Wood, M., Phillip, N. D., Sheng, Y., Mao, C., Kalnaus, S., Daniel, C., & Wood, D. L. (2017). Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM, 69(9), 1484–1496.
6. Korthauer, R. (2018). Lithium-Ion Batteries: Basics and Applications. Springer.
7. Goodenough, J. B. (2007). Cathode materials: A personal perspective. Journal of Power Sources, 174(2), 996–1000.
8. Kim, T., Song, W., Son, D.-Y., Ono, L. K., & Qi, Y. (2019). Lithium-ion batteries: Outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A, 7(7), 2942–2964.
9. Darbar, D., Malkowski, T., Self, E. C., Bhattacharya, I., Reddy, M. V. V., & Nanda, J. (2022). An overview of cobalt-free, nickel-containing cathodes for Li-ion batteries. Materials Today Energy, 30, 101173.
10. Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 195(4), 939–954.
11. Armand, M., Axmann, P., Bresser, D., Copley, M., Edström, K., Ekberg, C., Guyomard, D., Lestriez, B., Novák, P., Petranikova, M., Porcher, W., Trabesinger, S., Wohlfahrt-Mehrens, M., & Zhang, H. (2020). Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 479, 228708.
12. Noh, H.-J., Youn, S., Yoon, C. S., & Sun, Y.-K. (2013). Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources, 233, 121–130.
13. Cheng, H., Shapter, J. G., Li, Y., & Gao, G. (2021). Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 57, 451–468.
14. Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., Tavajohi, N., & Li, B. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83–99.
15. Wu, Y. P., Rahm, E., & Holze, R. (2003). Carbon anode materials for lithium ion batteries. Journal of Power Sources, 114(2), 228–236.
16. Patil, R. S., Khandelwal, A., Kim, K. Y., Hariharan, K. S., & Kolake, S. M. (2019). Model Based Design of Composite Carbonaceous Anode for Li-Ion Battery for Fast Charging Applications. Journal of The Electrochemical Society, 166(6), A1185–A1196.
17. Review on recent progress of nanostructured anode materials for Li-ion batteries. (2014). Journal of Power Sources, 257, 421–443.
18. Nzereogu, P. U., Omah, A. D., Ezema, F. I., Iwuoha, E. I., & Nwanya, A. C. (2022). Anode materials for lithium-ion batteries: A review. Applied Surface Science Advances, 9, 100233.
19. Saravanan, K., Ananthanarayanan, K., & Balaya, P. (2010). Mesoporous TiO2 with high packing density for superior lithium storage. Energy & Environmental Science, 3(7), 939–948.
20. Wang, X., Wang, J., Chen, Z., Yang, K., Zhang, Z., Shi, Z., Mei, T., Qian, J., Li, J., & Wang, X. (2020). Yolk-double shell Fe3O4@C@C composite as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 822, 153656.
21. Xu, W., Canfield, N. L., Wang, D., Xiao, J., Nie, Z., & Zhang, J.-G. (2010). A three-dimensional macroporous Cu/SnO2 composite anode sheet prepared via a novel method. Journal of Power Sources, 195(21), 7403–7408.
22. Haregewoin, A. M., Wotango, A. S., & Hwang, B.-J. (2016). Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Sci., 9(6), 1955–1988.
23. Zhang, S. S. (2006). A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 162(2), 1379–1394.
24. Wang, Q., Jiang, L., Yu, Y., & Sun, J. (2019). Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 55, 93–114.
25. Slater, M. D., Kim, D., Lee, E., & Johnson, C. S. (2013). Sodium‐Ion Batteries. Advanced Functional Materials, 23(8), 947–958.
26. Ma, S., Yan, W., Dong, Y., Su, Y., Ma, L., Li, Y., Fang, Y., Wang, B., Wu, S., Liu, C., Chen, S., Chen, L., Huang, Q., Wang, J., Li, N., & Wu, F. (2024). Recent advances in carbon-based anodes for high-performance sodium-ion batteries: Mechanism, modification and characterizations. Materials Today.
27. Chayambuka, K., Mulder, G., Danilov, D. L., & Notten, P. H. L. (2018). Sodium‐Ion Battery Materials and Electrochemical Properties Reviewed. Advanced Energy Materials, 8(16), 1800079.
28. Wang, Y., Qu, Q., Gao, S., Tang, G., Liu, K., He, S., & Huang, C. (2019). Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 155, 706–726.
29. Liu, A., Liu, T.-F., Yuan, H.-D., Wang, Y., Liu, Y.-J., Luo, J.-M., Nai, J.-W., & Tao, X.-Y. (2022). A review of biomass-derived carbon materials for lithium metal anodes. New Carbon Materials, 37(4), 658–674.
30. Zhu, Z., & Xu, Z. (2020). The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews, 134, 110308.
31. Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270, 627–642.
32. Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 40, 673–687.
33. Ukanwa, K., Patchigolla, K., Sakrabani, R., Anthony, E., & Mandavgane, S. (2019). A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. Sustainability, 11(22), 6204.
34. He, H., Zhang, R., Zhang, P., Wang, P., Chen, N., Qian, B., Zhang, L., Yu, J., & Dai, B. (2023). Functional Carbon from Nature: Biomass‐Derived Carbon Materials and the Recent Progress of Their Applications. Advanced Science, 10(16), 2205557.
35. Wang, Y., Zhang, M., Shen, X., Wang, H., Wang, H., Xia, K., Yin, Z., & Zhang, Y. (2021). Biomass‐Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 17(40), 2008079.
36. Bi, Z., Kong, Q., Cao, Y., Sun, G., Su, F., Wei, X., Li, X., Ahmad, A., Xie, L., & Chen, C.-M. (2019). Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review. Journal of Materials Chemistry A, 7(27), 16028–16045.
37. Zhu, Z., Men, Y., Zhang, W., Yang, W., Wang, F., Zhang, Y., Zhang, Y., Zeng, X., Xiao, J., Tang, C., Li, X., & Zhang, Y. (2024). Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems. eScience, 100249.
38. Hong, Z., Zhen, Y., Ruan, Y., Kang, M., Zhou, K., Zhang, J., Huang, Z., & Wei, M. (2018). Rational Design and General Synthesis of S-Doped Hard Carbon with Tunable Doping Sites toward Excellent Na-Ion Storage Performance. Advanced Materials, 30(29), 1802035.
39. Chen, C., Huang, Y., Zhu, Y., Zhang, Z., Guang, Z., Meng, Z., & Liu, P. (2020). Nonignorable Influence of Oxygen in Hard Carbon for Sodium Ion Storage. ACS Sustainable Chemistry & Engineering, 8(3), 1497–1506.
40. Soltani, N., Bahrami, A., Giebeler, L., Gemming, T., & Mikhailova, D. (2021). Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Progress in Energy and Combustion Science, 87, 100929.
41. Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J. T., Liang, Y., Cui, Y., & Dai, H. (2010). Mn3O4−Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society, 132(40), 13978–13980.
42. Wang, B., Li, F., Wang, X., Wang, G., Wang, H., & Bai, J. (2019). Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries. Chemical Engineering Journal, 364, 57–69.
43. Wang, M., Huang, Y., Zhang, N., Wang, K., Chen, X., & Ding, X. (2018). A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes. Chemical Engineering Journal, 334, 2383–2391
44. Ren, K., Liu, Z., Wei, T., & Fan, Z. (2021). Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors. Nano-Micro Letters, 13(1), 129.
45. Shan, J., Wang, J., Zhao, Y., & Huang, J. (2019). Nitrogen-doped porous carbon/Mn3O4 composites as anode materials for lithium-ion batteries. Solid State Sciences, 92, 89–95.
46. Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444.
47. Song, B., Liang, Y., Zhou, Y., Zhang, L., Li, H., Zhu, N.-X., Tang, B. Z., Zhao, D., & Liu, B. (2024). CO2-Based Stable Porous Metal–Organic Frameworks for CO2 Utilization. Journal of the American Chemical Society.
48. Hu, Z., Peng, Y., Kang, Z., Qian, Y., & Zhao, D. (2015). A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorganic Chemistry, 54(10), 4862–4868.
49. Lee, E. J., Bae, J., Choi, K. M., & Jeong, N. C. (2019). Exploiting Microwave Chemistry for Activation of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 11(38), 35155–35161.
50. Liu, Y., Wei, Y., Liu, M., Bai, Y., Wang, X., Shang, S., Chen, J., & Liu, Y. (2021). Electrochemical Synthesis of Large Area Two-Dimensional Metal–Organic Framework Films on Copper Anodes. Angewandte Chemie International Edition, 60(6), 2887–2891.
51. Ploetz, E., Engelke, H., Lächelt, U., & Wuttke, S. (2020). The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 30(41), 1909062.
52. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186–10191.
53. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., & Yaghi, O. M. (2010). Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43(1), 58–67.
54. Bibi, S., Pervaiz, E., & Ali, M. (2021). Synthesis and applications of metal oxide derivatives of ZIF-67: A mini-review. Chemical Papers, 75(6), 2253–2275.
55. Zhong, G., Liu, D., & Zhang, J. (2018). The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 6(5), 1887–1899.
56. Duan, C., Yu, Y., & Hu, H. (2022). Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy & Environment, 7(1), 3–15.
57. Shi, Z., Yu, Y., Fu, C., Wang, L., & Li, X. (2017). Water-based synthesis of zeolitic imidazolate framework-8 for CO2 capture. RSC Advances, 7(46), 29227–29232.
58. Ethiraj, J., Palla, S., & Reinsch, H. (2020). Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials, 294, 109867.
59. Sarawade, P., Tan, H., & Polshettiwar, V. (2013). Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO2 Capture Capacity. ACS Sustainable Chemistry & Engineering, 1(1), 66–74.
60. Li, W., Wang, K., Yang, X., Zhan, F., Wang, Y., Liu, M., Qiu, X., Li, J., Zhan, J., Li, Q., & Liu, Y. (2020). Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal, 379, 122256.
61. Sumida, K., Liang, K., Reboul, J., Ibarra, I. A., Furukawa, S., & Falcaro, P. (2017). Sol–Gel Processing of Metal–Organic Frameworks. Chemistry of Materials, 29(7), 2626–2645.
62. Yang, Q., Lu, R., Ren, S., Chen, C., Chen, Z., & Yang, X. (2018). Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chemical Engineering Journal, 348, 202–211.
63. Babu, R., Roshan, R., Kathalikkattil, A. C., Kim, D. W., & Park, D.-W. (2016). Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 8(49), 33723–33731.
64. Mahmoodi, N. M., Taghizadeh, M., Taghizadeh, A., Abdi, J., Hayati, B., & Shekarchi, A. A. (2019). Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Applied Surface Science, 480, 288–299.
65. Wang, L., Wang, Z., Xie, L., Zhu, L., & Cao, X. (2019). ZIF-67-Derived N-Doped Co/C Nanocubes as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 11(18), 16619–16628.
66. Cui, L., Qi, H., Wang, N., Gao, X., Song, C., Yang, J., Wang, G., Kang, S., & Chen, X. (2022). N/S co-doped CoSe/C nanocubes as anode materials for Li-ion batteries. Nanotechnology Reviews, 11(1), 244–251.
67. Zhang, Z., Huang, Y., Gao, X., Xu, Z., & Wang, X. (2020). Rational Design of Hierarchically Structured CoS2 @NCNTs from Metal–Organic Frameworks for Efficient Lithium/Sodium Storage Performance. ACS Applied Energy Materials, 3(7), 6205–6214.
68. Scrosati, B., Hassoun, J., & Sun, Y.-K. (2011). Lithium-ion batteries. A look into the future. Energy & Environmental Science, 4(9), 3287.
69. Bai, S., Tan, G., Li, X., Zhao, Q., Meng, Y., Wang, Y., Zhang, Y., & Xiao, D. (2016). Pumpkin‐Derived Porous Carbon for Supercapacitors with High Performance. Chemistry – An Asian Journal, 11(12), 1828–1836.
70. Bunaciu, A. A., Udriştioiu, E. G., & Aboul-Enein, H. Y. (2015). X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry, 45(4), 289–299.
71. Raman spectroscopy. (2024). In Wikipedia.
72. Bardestani, R., Patience, G. S., & Kaliaguine, S. (2019). Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11), 2781–2791.
73. Inkson, B. J. (2016). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods (pp. 17–43). Elsevier.
74. Choi, W., Shin, H.-C., Kim, J. M., Choi, J.-Y., & Yoon, W.-S. (2020). Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 11(1), 1–13.
75. Rafiee, M., Abrams, D. J., Cardinale, L., Goss, Z., Romero-Arenas, A., & Stahl, S. S. (2024). Cyclic voltammetry and chronoamperometry: Mechanistic tools for organic electrosynthesis. Chemical Society Reviews, 53(2), 566–585.
76. McDonald-Wharry, J., Manley-Harris, M., & Pickering, K. (2013). Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy. Carbon, 59, 383–405.
77. Roberts, A. D., Li, X., & Zhang, H. (2014). Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev., 43(13), 4341–4356.
78. Xiao, B., Rojo, T., & Li, X. (2019). Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges. ChemSusChem, 12(1), 133–144.
79. Wang, L.-H., Ren, L.-L., Qin, Y.-F., Chen, J., Chen, H.-Y., Wang, K., Liu, H.-J., Huang, Z., & Li, Q. (2022). Preparation of Mn3O4 Nanoparticles via Precipitation in Presence of CTAB Molecules and Its Application as Anode Material for Lithium Ion Batteries. International Journal of Electrochemical Science, 17(2), 220221.
80. Ahmed, F., Almutairi, G., Hasan, P., Rehman, S., Kumar, S., Shaalan, N., Alkhateeb Aljaafari, A., Alshoaibi, A., AlOtaibi, B., & Khan, K. (2023). Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries. Micromachines, 14, 192.
81. An, Y., Zhang, W., Zhang, X., Zhong, Y., Ding, L., Hao, Y., White, M., Chen, Z., An, Z., & Wang, X. (2023). Adsorption Recycling and High-Value Reutilization of Heavy-Metal Ions from Wastewater: As a High-Performance Anode Lithium Battery. Langmuir, 39(35), 12324–12335.
82. Simões dos Reis, G., Mayandi Subramaniyam, C., Cárdenas, A. D., Larsson, S. H., Thyrel, M., Lassi, U., & García-Alvarado, F. (2022). Facile Synthesis of Sustainable Activated Biochars with Different Pore Structures as Efficient Additive-Carbon-Free Anodes for Lithium- and Sodium-Ion Batteries. ACS Omega, 7(46), 42570–42581.
83. Jiang, Q., Ni, Y., Zhang, Q., Gao, J., Wang, Z., Yin, H., Jing, Y., & Wang, J. (2022). Sustainable Nitrogen Self-Doped Carbon Nanofibers from Biomass Chitin as Anodes for High-Performance Lithium-Ion Batteries. Energy & Fuels, 36(7), 4026–4033.
84. Panda, M. R., Kathribail, A. R., Modak, B., Sau, S., Dutta, D. P., & Mitra, S. (2021). Electrochemical properties of biomass-derived carbon and its composite along with Na2Ti3O7 as potential high-performance anodes for Na-ion and Li-ion batteries. Electrochimica Acta, 392, 139026.
85. Nagaraja, P., Rao, H. S., Pamidi, V., Umeshbabu, E., Rao, G. R., & Justin, P. (2023). Mn3O4 nano-octahedrons embedded in nitrogen-doped graphene oxide as potent anode material for lithium-ion batteries. Ionics, 29(7), 2587–2598.
86. Weng, S.-C., Brahma, S., Huang, P.-C., Huang, Y.-C., Lee, Y.-H., Chang, C.-C., & Huang, J.-L. (2020). Enhanced capacity and significant rate capability of Mn3O4/reduced graphene oxide nanocomposite as high performance anode material in lithium-ion batteries. Applied Surface Science, 505, 144629.
87. Thauer, E., Shi, X., Zhang, S., Chen, X., Deeg, L., Klingeler, R., Wenelska, K., & Mijowska, E. (2021). Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance. Energy, 217, 119399.
88. Han, X., Cui, Y., & Liu, H. (2020). Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 814, 152348.
89. Varghese, S. P., Babu, B., Prasannachandran, R., Antony, R., & Shaijumon, M. M. (2019). Enhanced electrochemical properties of Mn3O4/graphene nanocomposite as efficient anode material for lithium ion batteries. Journal of Alloys and Compounds, 780, 588–596.
90. Zhou, J., Lin, N., Cai, W. L., Guo, C., Zhang, K., Zhou, J., Zhu, Y., & Qian, Y. (2016). Synthesis of S/CoS2 Nanoparticles-Embedded N-doped Carbon Polyhedrons from Polyhedrons ZIF-67 and their Properties in Lithium-Sulfur Batteries. Electrochimica Acta, 218, 243–251.
91. Lu, X., Liu, A., Zhang, Y., & Liu, S. (2021). A yolk-shell structured CoS2@NC@CNC with double carbon shell coating from confined derivatization of ZIF-67 growth in carbon nanocages for superior Li storage. Electrochimica Acta, 371, 137773.
92. He, B., Li, G., Chen, L., Chen, Z., Jing, M., Zhou, M., Zhou, N., Zeng, J., & Hou, Z. (2018). A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochimica Acta, 278, 106–113.
93. Yan, J., Huang, Y., Han, X., Gao, X., & Liu, P. (2019). Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Composites Part B: Engineering, 163, 67–76.
94. Zhang, J., Yu, L., & Lou, X. W. D. (2017). Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Research, 10(12), 4298–4304.
95. Wang, Q., Zou, R., Xia, W., Ma, J., Qiu, B., Mahmood, A., Zhao, R., Yang, Y., Xia, D., & Xu, Q. (2015). Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. Small, 11(21), 2511–2517.
96. Wang, Q., Jiao, L., Han, Y., Du, H., Peng, W., Huan, Q., Song, D., Si, Y., Wang, Y., & Yuan, H. (2011). CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries. The Journal of Physical Chemistry C, 115(16), 8300–8304.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明