博碩士論文 111324060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.143.241.237
姓名 許承羽(CHENG-YU HSU)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鎂/聚丙烯酸/聚偏二氟乙烯修飾聚丙烯隔離膜應用於鋰離子電池
(MgO/Poly(acrylic acid)/Poly(vinylidene difluoride) Modified Polypropylene Separators for Lithium-Ion Batteries)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究
★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
★ 以有機金屬框架製備鐵摻雜富鋰鎳錳鈷氧正極材料 應用於鋰離子電池之研究★ Na1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/ 醋酸纖維素複合型固態電解質應用於鈉離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 鋰離子電池(LIBs)商業化以來,其能量密度高、體積小、重量輕的優點使之在電子產品和電動車中廣泛應用。然而,聚乙烯(PE)和聚丙烯(PP)等商用隔離膜的熱穩定性差導致了安全性問題。此外,PP的電解質的親和力較差,阻礙了鋰離子的傳遞,降低了鋰離子電池的性能。為了解決這些問題,一些研究使用X射線或電漿來活化隔離膜表面,然後透過逐層自組裝引入官能基或無機粒子。然而,此類方法成本高且複雜。相較之下,本研究採用簡單的刮刀塗佈方法,將極性官能基和無機粒子引入PP的表面改善了LIBs的性能及安全性。
在本研究中,我們製備了一種藉由簡單的刮刀塗佈法製備之修飾隔離膜。首先,我們將氧化鎂(MgO)無機粒子、聚偏二氟乙烯(PVDF)和聚丙烯酸(PAA)混合形成漿料,接著,將其塗佈於PP表面。我們研究了不同漿料比例塗佈製備的修飾隔離膜之鋰離子遷移數、離子電導率和電化學窗口的影響。藉由調整PAA和PVdF的比例,我們獲得了最佳的漿料組成,即80% MgO、5% PVdF和15% PAA,稱為15A5V80Mg。在熱穩定性測試中,15A5V80Mg在160 °C下持續1小時的熱處理,未觀察到明顯的熱收縮。電解質含有率從110%增至382%,並且電解質接觸角由35.46°下降到0°,顯著提高了電解質的親和性。此外,它顯示出較高的鋰離子轉移數(0.71)和1.458(mS/cm)的離子電導率。在0.5 mA/cm2電流密度下進行的鋰沉積和剝落測試中,持續超過820小時才短路。結果表明,塗層在隔離膜/鋰界面的穩定作用,減少了鋰枝晶引起的熱失控風險。與PP相比,LiFePO4(LFP)||15A5V80Mg||Li電池在0.2 C下能表現出155 mAh/g的容量。在長循環測試中,LFP||15A5V80Mg||Li電池在2.0 C下經過600次充放電後仍保持92.54%的放電容量,而PP隔離膜僅保持23.77%。這顯示了15A5V80Mg隔離膜優異的循環穩定性。這些發現有助於LIBs的發展和安全性的改善,快速且低成本的製備方式也有助於大規模生產。
摘要(英) Since the commercialization of lithium-ion batteries (LIBs), they have been widely used in electronic products and electric vehicles due to their high energy density, small size, and light weight. However, commercial separators like polyethylene (PE) and polypropylene (PP) suffer from poor thermal stability, leading to safety issues. Additionally, poor electrolyte affinity of PP hinders lithium ion transport, reducing the performance of LIBs. To solve these problems, some studies have used X-rays or plasma to activate the separator surface, then introduced functional groups or inorganic particles through layer-by-layer self-assembly. However, these methods are costly and complex. In contrast, this study employs a simple blade coating method to introduce polar functional groups and inorganic particles onto the surface of PP, enhancing both the performance and safety of LIBs.
In our study, we made a modified separator, prepared by blade-coating method. We mixed the slurry composed of magnesium oxide (MgO) inorganic particles, poly(vinylidene difluoride) (PVDF) and poly(acrylic acid) (PAA) as adhesives. Then, the slurry was coated on PP surface. The influence of lithium ion transference number, ionic conductivity, and electrochemical window was investigated. By adjusting the ratio of PAA to PVdF, we obtained the optimal slurry composition, which is 80% MgO, 5% PVdF, and 15% PAA, referred to as 15A5V80Mg. No significant thermal shrinkage in thermal stability tests were observed on 15A5V80Mg at 160 °C for 1 hour. The electrolyte uptake increased from 110% to 382% and electrolyte contact angle decreased from 35.46° to 0°, significantly enhancing electrolyte affinity. Moreover, it exhibited a high lithium ion transference number (0.71) and ion conductivity of 1.458 (mS/cm). Lithium plating and stripping tests at a current density of 0.5 mA/cm2 were conducted, it lasted close to 820 hours before short-circuiting. The result illustrated the stabilizing effect of coating on the separator/lithium interface, reducing the risk of thermal runaway caused by lithium dendrites. Compared to PP, the LiFePO4 (LFP)||15A5V80Mg||Li cells can demonstrate the capacity of 155 mAh/g under 0.2 C. During the long cycle test, the LFP||15A5V80Mg||Li cell maintained a 92.54% capacity retention after 600 charge and discharge process at 2.0 C, whereas the PP separator only retained 23.77%. This demonstrates the excellent cycling stability of the 15A5V80Mg separator. These findings are beneficial for the development and improved safety of LIBs. In addition, low-cost and fast preparation methods also has the advantage of facilitating large-scale production.
關鍵字(中) ★ 鋰離子電池
★ 陶瓷塗層隔離膜
★ 混合黏合劑
★ 高鋰離子遷移數
★ LFP循環性能
關鍵字(英) ★ Lithium-ion Battery
★ Ceramic-coated Separator
★ Hybrid Adhesives
★ High Lithium Ion Transference Number
★ LFP Cycle Performance
論文目次 摘要 i
Abstract iii
Acknowledgement v
List of figures ix
List of tables xii
Chapter 1 Introduction 1
1.1 Global energy issues and energy storage technologies. 1
1.2 Market demand for lithium-ion batteries 3
1.3 Research Motivation 4
Chapter 2 Background 6
2.1 The composition and operating principles of lithium-ion batteries 6
2.2 Component of lithium-ion batteries 7
2.2.1 Positive electrode 7
2.2.2 Negative electrode 9
2.2.3 Electrolyte 10
2.2.4 Separator 11
2.3 Safety Concerns of Lithium-ion Batteries 13
2.4 Surface Modification Methods for Separators 14
2.5 Separator Modification Materials 16
2.5.1 Inorganic Material Modification 16
2.5.2 Polymer Modifications 17
2.6 Key Factors Affecting Battery Performance of Separators 20
2.6.1 Polarity 20
2.6.2 Electrolyte Affinity 22
2.6.3 Lithium Dendrites 25
2.6.4 Thermal Stability 28
Chapter 3 Experiment 30
3.1 Experimental frame 30
3.2 Electrode preparation process 33
3.3 MgO preparation process 34
3.4 Preparation process of PAA/PVDF with MgO modified separators 35
3.5 CR2032 Coin Cell Assembly 36
3.6 Material Analysis and Electrochemical Properties 37
3.6.1 Thermal stability 38
3.6.2 Cold Emission Field-Scanning Electron Microscope (CFE-SEM) 38
3.6.3 Contact Angle Analyzer and electrolyte uptake 38
3.6.4 Electrochemical Impedance Spectroscopy (EIS) 39
3.6.5 Linear Sweep Voltammetry (LSV) 39
3.6.6 Steady-State Polarization Curve 40
3.6.7 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) 40
3.6.8 Mechanical Properties 41
3.6.9 Battery Charge-Discharge Performance Analysis 41
Chapter 4 Result and discussion 42
4.1 The thermal stability of modified separators 42
4.2 Thermogravimetric Analysis 44
4.3 Surface morphology of PP and modified separators 46
4.4 Electrolyte Affinity 48
4.5 Linear Sweep Voltammetry (LSV) Analysis 51
4.6 Electrochemical Impedance Spectroscopy (EIS) Analysis 54
4.7 Steady-State Polarization Curve Test 56
4.8 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy Analysis 59
4.9 LFP Battery Rate Performance 61
4.10 Long Cycle Testing of LFP Batteries at 2.0 C 63
4.11 Lithium Plating and Stripping Behavior 67
4.12 Mechanical Property Analysis 70
Chapter 5 Conclusion and Prospect 72
5.1 Conclusion 72
5.1.1 Hybrid Adhesives with MgO Modified Separator 72
5.1.2 Electrochemical Performance and Battery Performance of Modified Separators 73
5.2 Prospect 76
Chapter 6 Reference 77
參考文獻 1. Roser, H.R.a.M. CO₂ emissions 2020; Available from: https://ourworldindata.org/co2-emissions.
2. Gao, W., et al., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020. 49(23): p. 8584-8686.
3. Chakraborty, M.R., et al., A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems. Batteries, 2022. 8(9): p. 124.
4. Yang, Z., et al., Electrochemical Energy Storage for Green Grid. Chemical Reviews, 2011. 111(5): p. 3577-3613.
5. Luo, X., et al., Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 2015. 137: p. 511-536.
6. Ding, Y., et al., Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019. 2(1): p. 1-28.
7. Pesaran, A.A., Lithium-Ion Battery Technologies for Electric Vehicles: Progress and challenges. IEEE Electrification Magazine, 2023. 11(2): p. 35-43.
8. Yang, Y., et al., Function-directed design of battery separators based on microporous polyolefin membranes. Journal of Materials Chemistry A, 2022. 10(27): p. 14137-14170.
9. Gong, Z. and Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy & Environmental Science, 2011. 4(9): p. 3223-3242.
10. Murdock, B.E., K.E. Toghill, and N. Tapia-Ruiz, A Perspective on the Sustainability of Cathode Materials used in Lithium-Ion Batteries. Advanced Energy Materials, 2021. 11(39): p. 2102028.
11. Zhang, H., et al., Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. Journal of Materials Chemistry A, 2018. 6(42): p. 20564-20620.
12. Liang, G., et al., Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. Journal of Materials Chemistry A, 2020. 8(31): p. 15373-15398.
13. Zheng, J., et al., Li- and Mn-Rich Cathode Materials: Challenges to Commercialization. Advanced Energy Materials, 2017. 7(6): p. 1601284.
14. Sharma, S.K., et al., Progress in electrode and electrolyte materials: path to all-solid-state Li-ion batteries. Energy Advances, 2022. 1(8): p. 457-510.
15. Qi, W., et al., Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 2017. 5(37): p. 19521-19540.
16. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
17. Hartnig, C. and M. Schmidt, Electrolytes and conducting salts, in Lithium-Ion Batteries: Basics and Applications, R. Korthauer, Editor. 2018, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 59-74.
18. Zhu, L., et al., Review—Recent Developments in Safety-Enhancing Separators for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2021. 168(10): p. 100524.
19. Chen, Y., et al., A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 2021. 59: p. 83-99.
20. Zhai, Y., et al., Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries. Electrochimica Acta, 2015. 154: p. 219-226.
21. Li, Y., et al., Thermotolerant separators for safe lithium-ion batteries under extreme conditions. Journal of Materials Chemistry A, 2020. 8(39): p. 20294-20317.
22. Chung, S.H., et al., Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. Journal of Power Sources, 2001. 97-98: p. 644-648.
23. Sun, W., et al., Nano-MgO/AB decorated separator to suppress shuttle effect of lithium–sulfur battery. Nanoscale Advances, 2019. 1(4): p. 1589-1597.
24. Qin, T., et al., Design of functional binders for high-specific-energy lithium-ion batteries: from molecular structure to electrode properties. Industrial Chemistry & Materials, 2024. 2(2): p. 191-225.
25. Xue, Z., D. He, and X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(38): p. 19218-19253.
26. Ngai, K.S., et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016. 22(8): p. 1259-1279.
27. Croce, F., et al., A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. Energy & Environmental Science, 2011. 4(3): p. 921-927.
28. Cai, W., et al., A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 2020. 49(12): p. 3806-3833.
29. Zhi, J., et al., Biomolecule-guided cation regulation for dendrite-free metal anodes. Science Advances, 2020. 6(32): p. eabb1342.
30. Sheng, L., et al., Role of Separator Surface Polarity in Boosting the Lithium-Ion Transport Property for a Lithium-Based Battery. ACS Applied Energy Materials, 2021. 4(5): p. 5212-5221.
31. Lin, C.-E., et al., Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. Journal of Materials Chemistry A, 2018. 6(3): p. 991-998.
32. Chen, Y., et al., Bioinspired Separator with Ion-Selective Nanochannels for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023. 15(14): p. 18333-18342.
33. Wang, Z., et al., Self-Assembly of PEI/SiO2 on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability. ACS Applied Materials & Interfaces, 2015. 7(5): p. 3314-3322.
34. Jin, S.Y., et al., Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. Journal of Industrial and Engineering Chemistry, 2017. 45: p. 15-21.
35. Zhang, Y., et al., A thin inorganic composite separator for lithium-ion batteries. Journal of Membrane Science, 2016. 509: p. 19-26.
36. Rafiz, K., Y. Jin, and Y.S. Lin, Performance of electrode-supported silica membrane separators in lithium-ion batteries. Sustainable Energy & Fuels, 2020. 4(3): p. 1254-1264.
37. Hao, Z., et al., Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Materials Horizons, 2021. 8(1): p. 12-32.
38. Na, W., et al., Lithium Dendrite Suppression with UV-Curable Polysilsesquioxane Separator Binders. ACS Applied Materials & Interfaces, 2016. 8(20): p. 12852-12858.
39. Jin, R., et al., High Li+ Ionic Flux Separator Enhancing Cycling Stability of Lithium Metal Anode. ACS Sustainable Chemistry & Engineering, 2018. 6(3): p. 2961-2968.
40. Shi, C., et al., A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries. Journal of Membrane Science, 2016. 517: p. 91-99.
41. Liu, J., et al., Ultrastrong and Heat-Resistant Poly(ether ether ketone) Separator for Dendrite-Proof and Heat-Resistant Lithium-Ion Batteries. ACS Applied Energy Materials, 2019. 2(5): p. 3886-3895.
42. Huang, H., et al., Grafting Polyethyleneimine–Poly(ethylene glycol) Gel onto a Heat-Resistant Polyimide Nanofiber Separator for Improving Lithium-Ion Transporting Ability in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2023. 15(25): p. 30913-30923.
43. Cheng, Q., et al., Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries. RSC Advances, 2016. 6(13): p. 10250-10265.
44. Cao, B., et al., Layer-Structured Composite Solid-State Electrolyte with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for High-Voltage Lithium Metal Batteries by In Situ Polymerization. ACS Applied Energy Materials, 2023. 6(16): p. 8626-8633.
45. Xing, L., et al., Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. The Journal of Physical Chemistry B, 2009. 113(52): p. 16596-16602.
46. Xing, L., et al., Theoretical Insight into Oxidative Decomposition of Propylene Carbonate in the Lithium Ion Battery. The Journal of Physical Chemistry B, 2009. 113(15): p. 5181-5187.
47. Zhu, X., et al., A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015. 7(43): p. 24119-24126.
48. Xian, D., et al., Effective Strategy to Improve Safety of Lithium-Ion Batteries by Constructing Ion Transport Modes and Employing a Cross-Linking Structure in the Separator. ACS Applied Energy Materials, 2023. 6(18): p. 9716-9725.
49. Song, J., et al., Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries. Advanced Functional Materials, 2014. 24(37): p. 5904-5910.
50. Dang, D., et al., Lithium Substituted Poly(acrylic acid) as a Mechanically Robust Binder for Low-Cost Silicon Microparticle Electrodes. ACS Applied Energy Materials, 2020. 3(11): p. 10940-10949.
51. Deacon, G.B. and R.J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordination Chemistry Reviews, 1980. 33(3): p. 227-250.
52. Edwards, D.A. and R.N. Hayward, Transition metal acetates. Canadian Journal of Chemistry, 1968. 46(22): p. 3443-3446.
53. Pang, S.-F., et al., The structural evolution of magnesium acetate complex in aerosols by FTIR–ATR spectra. Journal of Molecular Structure, 2015. 1087: p. 46-50.
54. Tsao, C.-H., et al., Polyethylene Glycol Dimethyl Ether-Plasticized Poly(vinylidene difluoride)-Based Polymer Electrolytes Inhibit Dendrite Growth and Enable Stable Cycling for Lithium-Metal Batteries. ACS Applied Energy Materials, 2023. 6(11): p. 5662-5670.
55. Yang, H., et al., ′Environment-friendly′ polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chemical Engineering Journal, 2021. 421: p. 129710.
56. Cheng, H., et al., In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Materials Today Energy, 2021. 20: p. 100623.
57. Cai, B.-R., et al., Ultraviolet-Cured Al2O3-Polyethylene Terephthalate/Polyvinylidene Fluoride Composite Separator with Asymmetric Design and Its Performance in Lithium Batteries. ACS Applied Energy Materials, 2021. 4(5): p. 5293-5303.
58. Han, D.-H., et al., A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries. Journal of Energy Chemistry, 2021. 52: p. 75-83.
59. Wei, L.-y., et al., ZnF2 doped porous carbon nanofibers as separator coating for stable lithium-metal batteries. Chemical Engineering Journal, 2021. 424: p. 130346.
60. Xue, C., et al., A novel polymer-modified separator for high-performance lithium-ion batteries. Journal of Power Sources, 2020. 449: p. 227548.
61. Liu, J., et al., Hexagonal Boron Nitride-Coated Polyimide Ion Track Etched Separator with Enhanced Thermal Conductivity and High-Temperature Stability for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022. 5(7): p. 8639-8649.
62. Yao, H., et al., Controllably regulating ion transport in lithium metal batteries via pore effect of metal–organic framework-based separators. Applied Surface Science, 2022. 589: p. 152885.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2024-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明