博碩士論文 111324601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.145.100.40
姓名 范曉梅(Pham Thi Mai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Lubricant and Anti-fouling Coatings for Silicone Catheter)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響★ 基於動態鍵的多功能丙烯酸交聯劑
★ 連續微流道反應器中進行防污聚合物篩選★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層
★ 高度纏結的雙離子水凝膠★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 矽膠具有優異的機械性質、低毒性和低生產成本,因此廣泛應用在醫療領域。然而,矽膠的疏水性在人體植入過程中會引發生物污損問題,限制其應用性。為了解決此困境,本研究採用簡單而有效的兩步塗層工藝來提升矽膠導管的表面性能。
第一層作為基底層,將矽膠導管浸泡在由四種單體合成之共聚物溶液中,各具特定功能: 2-甲基丙烯醯氧基乙基三甲基氯化銨 (TMAEMA) 為季銨鹽,具有抗菌性能;甲基丙烯酸十二烷基酯 (DMA) 可促進與矽膠表面間的疏水作用力;3-甲基丙烯醯氧基-2-羥丙基-4-氧基二苯甲酮 (MHPBP) 含有苯甲酮基團,能在紫外線照射下通過烴基插入交聯反應 (CHic) 與矽膠表面進行交聯;乙烯基吡咯烷酮 (NVP) 作為除氧劑,可提高交聯效率。
隨後,在基底層上以兩種不同的溶液作為功能性塗層,分別是聚乙烯吡咯烷酮(PVP) 及含有2-甲基丙烯醯氧基乙基磷醯膽鹼和甲基丙烯酸十二烷基酯的共聚物 (MPC-DMA),這些溶液用於誘導矽膠表面使其具有親水性和抗污性。本研究詳述合成共聚物的方法,並使用水接觸角儀、摩擦力測試、FTIR和AFM對塗層表面進行鑑定及分析,這些分析證實雙層塗層在矽膠表面的成功塗佈。此外,還進行細菌黏附測試、蛋白質吸附測試、溶血測試和細胞毒性測試,以評估塗層矽膠表面的抗污和生物相容性。結果顯示,PVP和MPC-DMA在上述實驗中具有卓越的性能,適合作為仿生的矽膠基材醫用塗層。
摘要(英) Silicone is a widely used material in medical applications due to its excellent mechanical properties, low toxicity, and low production cost. However, the hydrophobicity of silicone limits its medical implementation due to biofouling concerns which can cause challenges during prolonged human implantation. In this study, a simple and effective two-step coating process was employed to enhance the surface properties of silicone catheters. In the first step for the primer layer, silicone catheters were immersed in a solution containing a copolymer. This copolymer, synthesized from four monomers, serves distinct functions: 2-methacryloyloxy ethyl trimethylammonium chloride (TMAEMA) acts as a quaternary ammonium, known for its antibacterial properties; dodecyl methacrylate (DMA) facilitates hydrophobic-hydrophobic interactions with the silicone surface; 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP) contains a benzophenone group that can induce crosslinking with silicone surface under UV irradiation condition via C-H insertion crosslinking reactions (CHic); and n-vinyl-2-pyrrolidone (NVP) acts as oxygen scavenger to make the crosslinking efficiency. Subsequently, in the second step for functional layer, the two distinct solutions were utilized: one comprising polyvinylpyrrolidone (PVP) and the other containing a copolymer (2-methacryloyloxy phosphorylcholine-co-dodecyl methacrylate) (MPC-DMA). These solutions were employed to induce hydrophilic and antifouling properties on the silicone surface. The methods to synthesize copolymers were also described. Furthermore, the coated surfaces were characterized using water contact angle measurements (WCA), friction test, Fourier-transform infrared spectroscopy (FTIR), and atomic force microscope (AFM). These characterization techniques confirmed the successful deposition of dual layers onto the silicone surface and allowed assessment of their surface properties. Additionally, bacterial adhesion test, protein adsorption test, hemolysis test, cytotoxicity test, and encrustation test were conducted to evaluate the anti-fouling and biocompatibility abilities of the coated silicone surface. Following all the tests, both PVP and MPC-DMA exhibited good lubricity, excellent antifouling, and biocompatibility properties, rendering them suitable as medical coatings on silicone substrates.
關鍵字(中) ★ 矽膠
★ 醫療塗層
★ 烴基插入交聯反應 (CHic)
★ 聚乙烯吡咯烷酮 (PVP)
★ 2-基丙烯醯氧基乙基磷醯膽鹼 (MPC)
★ 3-甲基丙烯醯氧基-2-羥丙基-4-氧基二苯甲酮 (MHPBP)
關鍵字(英) ★ Silicone
★ Medical coatings
★ C-H insertion crosslinking reaction (CHic)
★ Polyvinylpyrrolidone (PVP)
★ 2-methacryloyloxy phosphorylcholine (MPC)
★ 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP)
論文目次 Table of Contents
中文摘要 ii
Abstract iii
Acknowledgment v
Table of Contents vi
List of figures ix
List of tables xi
List of Abbreviations xii
Chapter 1. Introduction 1
1.1. Silicone material 1
1.1.1. Silicone and its medical applications 1
1.1.2 Problems with silicone in biomedical implants 3
1.1.2.1 Bacterial biofilm infections 3
1.1.2.2 Nonspecific protein adsorption 4
1.1.3 Catheter - associated urinary tract infection (CAUTI) 6
1.2 Anti-fouling materials 7
1.2.1 Poly (ethylene glycol) (PEG) 7
1.2.2 Poly(N-vinylpyrrolidone) (PVP) 8
1.2.3 Zwitterionic polymer 9
1.3 Methods for modifying silicone surface 11
1.3.1 Photoinduced-grafting method 12
1.3.2 MHPBP and C, H-insertion crosslinking reaction (CHic) 14
Chapter 2. Research objective 16
Chapter 3. Materials and methods 18
3.1 Materials and equipment 18
3.1.1 Materials 18
3.1.2 Equipment 21
3.2 Material preparations 22
3.2.1 Synthesis of 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP) 22
3.2.2 Synthesis of TDMN random copolymer 23
3.2.3 Synthesis of random MD copolymer and P(MPC) polymer 24
3.2.4 Preparation of silicone catheter 25
3.2.5 Preparation of LB agar and LB broth 25
3.2.5.1 Preparation of LB agar 25
3.2.5.2 Preparation of LB Broth 25
3.3 Methods 25
3.3.1 Hydrogen-1 Nuclear Magnetic Resonance (1H-NMR) 25
3.3.2 Gel permeation chromatography (GPC) 26
3.3.3 Attenuated total reflectance (ATR-FTIR) for catheter surface characterization 26
3.3.4 Water contact angle measurement (WCA) 26
3.3.5 Surface tension of the coating solution 27
3.3.6 Viscosity of the coating solution 27
3.3.7 Atomic Force Microscope (AFM) 28
3.3.8 Preliminary lubricity test 28
3.3.9 Dynamic friction coefficient test 28
3.3.10 Hemolysis test 29
3.3.11 Bacterial adhesion test 30
3.3.12 Protein adsorption test 31
3.3.13 Cytotoxicity test 32
3.3.14 Encrustation test 33
3.4 Standard coating procedure 35
3.4.1 Range of coating component concentration. 35
3.4.2 Standard coating procedure. 35
Chapter 4. Results 36
4.1 Hydrogen-1 Nuclear Magnetic Resonance (1H-NMR) results 36
4.1.1 1H-NMR result of MHPBP monomer 36
4.1.2 1H-NMR result of TDMN copolymer 37
4.1.3 1H-NMR result of MPC-DMA copolymer (P(MPC-DMA)) 39
4.2 Lubricious coatings and dynamic friction coefficient test. 41
4.2.1 One-step coating process on silicone catheter. 41
4.2.2 Two-steps coating process on silicone catheter. 43
4.2.2.1 TDMN/PVP coating and dynamic friction coefficient test. 44
a) Investigation of different coating component for TDMN/PVP 44
b) Investigation of different UV irradiation time for TDMN/PVP 48
c) Investigation of different drying temperature for TDMN/PVP 49
4.2.2.2 TDMN/MD coating and dynamic friction coefficient test. 52
a) Investigation of different coating component for TDMN/MD 52
b) Investigation of different UV irradiation time for TDMN/MD coating 57
c) Investigation of different drying temperature for TDMN/MD 59
4.2.3 Optimal coating conditions for TDMN/PVP and TDMN/MD coatings 61
4.3 Stability of the coatings in DI water and PBS solution 62
4.4 Viscosity and surface tension of the coating solutions 65
4.5 Surface characterization for modified silicone catheter 66
4.5.1 Attenuated total reflectance (ATR-FTIR) for catheter surface characterization 66
4.5.2 Topography of the coatings on the silicone surface by AFM 67
4.5.3 Water contact angle 69
4.6 Anti-fouling test for unmodified/modified silicone catheters 70
4.6.1 Bacterial adhesion test 70
4.6.2 Protein adsorption test 72
4.7 Hemolysis test 73
4.8 Biocompatibility of the modified silicone catheter 74
4.9 Encrustation test of the unmodified/modified silicone 75
Chapter 5. Conclusions 78
Chapter 6. Future works 79
References 80
參考文獻 References

1. Andre Colas, J. C. Silicone biomaterials: History and chemistry and medical applications of silicones 2006.
2. Noll, W. Chemistry and technology of silicones; Elsevier, 2012.
3. Yilgör, E., & Yilgör, I. Silicone containing copolymers: Synthesis, properties and applications. Progress in Polymer Science 2014, 39(6), 1165-1195.
4. Zhang, X., Lin, G., Kumar, S. R., & Mark, J. E. Hydrogels prepared from polysiloxane chains by end linking them with trifunctional silanes containing hydrophilic groups. Polymer 2009, 50(23), 5414-5421.
5. Lee, S., & Vörös, J. An aqueous-based surface modification of poly (dimethylsiloxane) with poly (ethylene glycol) to prevent biofouling. Langmuir 2005, 21(25), 11957-11962.
6. Rahimi, A., & Mashak, A. Review on rubbers in medicine: Natural, silicone and polyurethane rubbers. Plastics, rubber and composites 2013, 46(2), 223-223.
7. Lam, M.; Migonney, V.; Falentin-Daudre, C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomaterialia 2021, 121, 68-88.
8. Sutthiwanjampa, C.; Hong, S.; Kim, W. J.; Kang, S. H.; Park, H. Hydrophilic Modification Strategies to Enhance the Surface Biocompatibility of Poly (dimethylsiloxane)‐Based Biomaterials for Medical Applications. Advanced Materials Interfaces 2023, 2202333-2202351.
9. Simmons, A.; Padsalgikar, A. D.; Ferris, L. M.; Poole-Warren, L. A. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Biomaterials 2008, 29 (20), 2987-2995.
10. Wong, I.; Ho, C.-M. Surface molecular property modifications for poly (dimethylsiloxane)(PDMS) based microfluidic devices. Microfluidics and nanofluidics 2009, 7, 291-306.
11. Drupitha, M.; Das, B.; Parameswaran, R.; Dhara, S.; Nando, G. B.; Naskar, K. Hybrid electrospun fibers based on TPU-PDMS and spherical nanohydroxyapatite for bone tissue engineering. Materials Today Communications 2018, 16, 264-273.
12. Huh, D.; Kim, H. J.; Fraser, J. P.; Shea, D. E.; Khan, M.; Bahinski, A.; Hamilton, G. A.; Ingber, D. E. Microfabrication of human organs-on-chips. Nature protocols 2013, 8 (11), 2135-2157.
13. Ibarlucea, B.; Fernández-Sánchez, C.; Demming, S.; Büttgenbach, S.; Llobera, A. Selective functionalisation of PDMS-based photonic lab on a chip for biosensing. Analyst 2011, 136 (17), 3496-3502.
14. Peng, R.; Li, D. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing. Nanoscale 2017, 9 (18), 5964-5974.
15. Song, J.; Winkeljann, B.; Lieleg, O. Biopolymer‐based coatings: promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Advanced Materials Interfaces 2020, 7 (17), 2000850-2000869.
16. Marmo, A. C., & Grunlan, M. A. Biomedical silicones: leveraging additive strategies to propel modern utility. ACS Macro Letters 2023, 12(2), 172-182.
17. Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future medicinal chemistry 2015, 7(4), 493-512.
18. Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., & Alarcon, E. I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4(12).
19. Veerachamy, S., Yarlagadda, T., Manivasagam, G., & Yarlagadda, P. K. Bacterial adherence and biofilm formation on medical implants: a review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2014, 228(10), 1083-1099.
20. Chen, H., Brook, M. A., & Sheardown, H. Silicone elastomers for reduced protein adsorption. Biomaterials 2004, 25(12), 2273-2282.
21. Seo, J. H., Matsuno, R., Konno, T., Takai, M., & Ishihara, K. Surface tethering of phosphorylcholine groups onto poly (dimethylsiloxane) through swelling–deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials 2018, 29(10), 1367-1376.
22. Anderson, J. M., Ziats, N. P., Azeez, A., Brunstedt, M. R., Stack, S., & Bonfield, T. L. Protein adsorption and macrophage activation on polydimethylsiloxane and silicone rubber. Journal of Biomaterials Science, Polymer Edition 1996, 7(2), 159-169.
23. Mitra, S. P. Protein Adsorption on Biomaterial Surfaces: Subsequent Conformational and Biological Consequences—A Review. J. Surf. Sci Technol 2020, 36, 7-38.
24. Klevens, R. M., Edwards, J. R., Richards Jr, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. Estimating health care-associated infections and deaths in US hospitals, 2002. Public health reports 2007, 122(2), 160-166.
25. Nicolle, L. E. Catheter associated urinary tract infections. Antimicrobial resistance and infection control 2014, 3, 1-8.
26. Yao, Q., Wu, C., Yu, X., Chen, X., Pan, G., & Chen, B. Current material engineering strategies to prevent catheter encrustation in urinary tracts. Materials Today Bio 2022, 16, 100413-100428.
27. Tenke, P., Mezei, T., Bőde, I., & Köves, B. Catheter-associated urinary tract infections. European urology supplements 2017, 16(4), 138-143.
28. Harris, J. M. E. Poly (ethylene glycol) chemistry: biotechnical and biomedical applications; 1992.
29. Cheng, G., Zhang, Z., Chen, S., Bryers, J. D., & Jiang, S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28(29), 4192-4199.
30. Sharma, S., Johnson, R. W., & Desai, T. A. Evaluation of the stability of nonfouling ultrathin poly (ethylene glycol) films for silicon-based microdevices. Langmuir 2004, 20(2), 348-356.
31. Jiang, S., & Cao, Z. Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced materials 2010, 22(9), 920-932.
32. Lowe, S., O′Brien-Simpson, N. M., & Connal, L. A. Antibiofouling polymer interfaces: poly (ethylene glycol) and other promising candidates. Polymer Chemistry 2015, 6(2), 198-212.
33. Liu, X., Xu, Y., Wu, Z., & Chen, H. Poly (N‐vinylpyrrolidone)‐modified surfaces for biomedical applications. Macromolecular bioscience 2013, 13(2), 147-154.
34. Hassouna, F., Therias, S., Mailhot, G., & Gardette, J. L. Photooxidation of poly (N-vinylpyrrolidone)(PVP) in the solid state and in aqueous solution. Polymer Degradation and Stability, 2009, 94(12), 2257-2266.
35. Franco, P.; De Marco, I. The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12 (5), 1114-1143.
36. Yuan, L., Yu, Q., Li, D., & Chen, H. Surface modification to control protein/surface interactions. Macromolecular bioscience 2011, 11(8), 1031-1040.
37. Serrano, Â., Sterner, O., Mieszkin, S., Zürcher, S., Tosatti, S., Callow, M. E., ... & Spencer, N. D. Nonfouling response of hydrophilic uncharged polymers. Advanced Functional Materials 2013, 23(46), 5706-5718.
38. Kurakula, M., & Rao, G. K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of drug delivery science and technology 2020, 60, 102046-102070.
39. Laschewsky, A.; Rosenhahn, A. Molecular design of zwitterionic polymer interfaces: searching for the difference. Langmuir 2018, 35 (5), 1056-1071.
40. Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51 (23), 5283-5293.
41. Ishihara, K. Revolutionary advances in 2‐methacryloyloxyethyl phosphorylcholine polymers as biomaterials. Journal of Biomedical Materials Research Part A 2019, 107 (5), 933-943.
42. Minko, S. Grafting on solid surfaces:“grafting to” and “grafting from” methods. Polymer surfaces and interfaces: characterization, modification and applications 2008, 215-234.
43. Tan, S. H., Nguyen, N. T., Chua, Y. C., & Kang, T. G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 2010, 4(3), 032204-032213.
44. Berdichevsky, Y., Khandurina, J., Guttman, A., & Lo, Y. H. UV/ozone modification of poly (dimethylsiloxane) microfluidic channels. Sensors and Actuators B: Chemical 2004, 97(2-3), 402-408.
45. Yang, L., Li, L., Tu, Q., Ren, L., Zhang, Y., Wang, X., ... & Wang, J. Photocatalyzed surface modification of poly (dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Analytical chemistry 2010, 82(15), 6430-6439.
46. Silverio, V., Canane, P. A., & Cardoso, S. Surface wettability and stability of chemically modified silicon, glass and polymeric surfaces via room temperature chemical vapor deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 570, 210-217.
47. Cortese, G., Martina, F., Vasapollo, G., Cingolani, R., Gigli, G., & Ciccarella, G. Modification of micro-channel filling flow by poly (dimethylsiloxane) surface functionalization with fluorine-Substituted aminonaphthols. Journal of Fluorine Chemistry 2010, 131(3), 357-363.
48. Ma, H., Davis, R. H., & Bowman, C. N. A novel sequential photoinduced living graft polymerization. Macromolecules 2000, 33(2), 331-335.
49. Lauer, A., Fast, D. E., Kelterer, A. M., Frick, E., Neshchadin, D., Voll, D., ... & Barner-Kowollik, C. Systematic assessment of the photochemical stability of photoinitiator-derived macromolecular chain termini. Macromolecules 2015, 48(23), 8451-8460.
50. Ding, G., Jing, C., Qin, X., Gong, Y., Zhang, X., Zhang, S., ... & Gao, F. Conjugated dyes carrying N, N-dialkylamino and ketone groups: One-component visible light Norrish type II photoinitiators. Dyes and Pigments 2017, 137, 456-467.
51. Scaiano, J. C., Stamplecoskie, K. G., & Hallett-Tapley, G. L. Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical communications 2012, 48(40), 4798-4808.
52. Prucker, O., Brandstetter, T., & Rühe, J. Surface-attached hydrogel coatings via C, H-insertion crosslinking for biomedical and bioanalytical applications. Biointerphases 2018, 13(1) (1), 010801-010810.
53. Liu, Q., & Locklin, J. L. Photocross-linking kinetics study of benzophenone containing zwitterionic copolymers. ACS omega 2020, 5(16), 9204-9211.
54. Yang, P., & Yang, W. . Surface chemoselective phototransformation of C–H bonds on organic polymeric materials and related high-tech applications. Chemical Reviews 2013, 113(7), 5547-5594.
55. Tsuji, K., Maeda, T., & Hotta, A. Polymer Surface Modifications by Coating. Printing on Polymers: Fundamentals and Applications 2015, 143-160.
56. Lin, X.; Fukazawa, K.; Ishihara, K. Photoreactive polymers bearing a zwitterionic phosphorylcholine group for surface modification of biomaterials. ACS applied materials & interfaces 2015, 7 (31), 17489-17498.
57. Brostow, W., Deborde, J. L., Jaclewicz, M., & Olszynski, P. Tribology with emphasis on polymers: friction, scratch resistance and wear. Journal of Materials Education 2003, 24(4/6), 119-132.
58. Mirzakhanian, Z., Faghihi, K., Barati, A., & Momeni, H. R. Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent. Journal of Biomaterials Science, Polymer Edition 2015, 26(18), 1439-1451.
59. International Organization for Standardization (ISO-10993-5:2009).
60. Rebl, H., Renner, J., Kram, W., Springer, A., Fritsch, N., Hansmann, H., ... & Nebe, J. B. Prevention of encrustation on ureteral stents: which surface parameters provide guidance for the development of novel stent materials? Polymers 2020, 12(3), 558-564.
61. Aylvin Jorge Angelo Athanasius Dias, E. H., Johannes Wilhelmus Belt, Marnix Rooijmans,Nicolaes Hubertus Maria De Bont,Edwin Peter Kennedy Currie. Coating composition for aurinary catheter. 2013.
62. Glocker, D., & Ranade, S. (Eds.). Medical Coatings and Deposition Technologies; 2016.
63. Yeh, S. B., Chen, C. S., Chen, W. Y., & Huang, C. J. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 2014, 30(38), 11386-11393.
64. Crémet, L., Corvec, S., Bémer, P., Bret, L., Lebrun, C., Lesimple, B., ... & Caroff, N. Orthopaedic-implant infections by Escherichia coli: molecular and phenotypic analysis of the causative strains. Journal of Infection 2012, 64(2), 169-175.
65. Oliveira, W. F., Silva, P. M. S., Silva, R. C. S., Silva, G. M. M., Machado, G., Coelho, L. C. B. B., & Correia, M. T. S. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. Journal of hospital infection 2018, 98(2), 111-117.
66. Li, M., Neoh, K. G., Xu, L. Q., Wang, R., Kang, E. T., Lau, T., ... & Chiong, E. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir 2012, 28(47), 16408-16422.
67. Chen, H., Yuan, L., Song, W., Wu, Z., & Li, D. Biocompatible polymer materials: role of protein–surface interactions. Progress in Polymer Science 2008, 33(11), 1059-1087.
68. Cheng, L., Liu, C., Wang, J., Wang, Y., Zha, W., & Li, X. Tough hydrogel coating on silicone rubber with improved antifouling and antibacterial properties. ACS Applied Polymer Materials 2022, 4(5), 3462-3472.
69. Singhal, J. P., & Ray, A. R. Synthesis of blood compatible polyamide block copolymers. Biomaterials 2002, 23(4), 1139-1145.
70. VanDelinder, V., & Groisman, A. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Analytical chemistry 2006, 78(11), 3765-3771.
71. Pinto, S., Alves, P., Santos, A. C., Matos, C. M., Oliveiros, B., Gonçalves, S., ... & Gil, M. H. Poly (dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains. Journal of Biomedical Materials Research Part A 2011, 98(4), 535-543.
72. Stroup, S. P., & Auge, B. K. Urinary infection and struvite stones. Urinary tract stone disease 2010, 18, 217-224.
73. Kleinen, L., Syring, I., & Laube, N. Reduction of biofilm formation on a‐C: H coated implants: investigation of biofilm‐surface interactions by variation of thin film properties. Plasma Processes and Polymers 2009, 6(1), 41-45.
74. Atmani, F., & Khan, S. R. Quantification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in vitro in the urine of healthy controls and stone-forming patients. Urologia internationalis 2002, 68(1), 54-59.
75. Prywer, J., Sadowski, R. R., & Torzewska, A. Aggregation of struvite, carbonate apatite, and Proteus mirabilis as a key factor of infectious urinary stone formation. Crystal Growth & Design 2015, 15(3), 1446-1451.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明