參考文獻 |
References
1. Andre Colas, J. C. Silicone biomaterials: History and chemistry and medical applications of silicones 2006.
2. Noll, W. Chemistry and technology of silicones; Elsevier, 2012.
3. Yilgör, E., & Yilgör, I. Silicone containing copolymers: Synthesis, properties and applications. Progress in Polymer Science 2014, 39(6), 1165-1195.
4. Zhang, X., Lin, G., Kumar, S. R., & Mark, J. E. Hydrogels prepared from polysiloxane chains by end linking them with trifunctional silanes containing hydrophilic groups. Polymer 2009, 50(23), 5414-5421.
5. Lee, S., & Vörös, J. An aqueous-based surface modification of poly (dimethylsiloxane) with poly (ethylene glycol) to prevent biofouling. Langmuir 2005, 21(25), 11957-11962.
6. Rahimi, A., & Mashak, A. Review on rubbers in medicine: Natural, silicone and polyurethane rubbers. Plastics, rubber and composites 2013, 46(2), 223-223.
7. Lam, M.; Migonney, V.; Falentin-Daudre, C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomaterialia 2021, 121, 68-88.
8. Sutthiwanjampa, C.; Hong, S.; Kim, W. J.; Kang, S. H.; Park, H. Hydrophilic Modification Strategies to Enhance the Surface Biocompatibility of Poly (dimethylsiloxane)‐Based Biomaterials for Medical Applications. Advanced Materials Interfaces 2023, 2202333-2202351.
9. Simmons, A.; Padsalgikar, A. D.; Ferris, L. M.; Poole-Warren, L. A. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Biomaterials 2008, 29 (20), 2987-2995.
10. Wong, I.; Ho, C.-M. Surface molecular property modifications for poly (dimethylsiloxane)(PDMS) based microfluidic devices. Microfluidics and nanofluidics 2009, 7, 291-306.
11. Drupitha, M.; Das, B.; Parameswaran, R.; Dhara, S.; Nando, G. B.; Naskar, K. Hybrid electrospun fibers based on TPU-PDMS and spherical nanohydroxyapatite for bone tissue engineering. Materials Today Communications 2018, 16, 264-273.
12. Huh, D.; Kim, H. J.; Fraser, J. P.; Shea, D. E.; Khan, M.; Bahinski, A.; Hamilton, G. A.; Ingber, D. E. Microfabrication of human organs-on-chips. Nature protocols 2013, 8 (11), 2135-2157.
13. Ibarlucea, B.; Fernández-Sánchez, C.; Demming, S.; Büttgenbach, S.; Llobera, A. Selective functionalisation of PDMS-based photonic lab on a chip for biosensing. Analyst 2011, 136 (17), 3496-3502.
14. Peng, R.; Li, D. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing. Nanoscale 2017, 9 (18), 5964-5974.
15. Song, J.; Winkeljann, B.; Lieleg, O. Biopolymer‐based coatings: promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Advanced Materials Interfaces 2020, 7 (17), 2000850-2000869.
16. Marmo, A. C., & Grunlan, M. A. Biomedical silicones: leveraging additive strategies to propel modern utility. ACS Macro Letters 2023, 12(2), 172-182.
17. Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future medicinal chemistry 2015, 7(4), 493-512.
18. Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., & Alarcon, E. I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4(12).
19. Veerachamy, S., Yarlagadda, T., Manivasagam, G., & Yarlagadda, P. K. Bacterial adherence and biofilm formation on medical implants: a review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2014, 228(10), 1083-1099.
20. Chen, H., Brook, M. A., & Sheardown, H. Silicone elastomers for reduced protein adsorption. Biomaterials 2004, 25(12), 2273-2282.
21. Seo, J. H., Matsuno, R., Konno, T., Takai, M., & Ishihara, K. Surface tethering of phosphorylcholine groups onto poly (dimethylsiloxane) through swelling–deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials 2018, 29(10), 1367-1376.
22. Anderson, J. M., Ziats, N. P., Azeez, A., Brunstedt, M. R., Stack, S., & Bonfield, T. L. Protein adsorption and macrophage activation on polydimethylsiloxane and silicone rubber. Journal of Biomaterials Science, Polymer Edition 1996, 7(2), 159-169.
23. Mitra, S. P. Protein Adsorption on Biomaterial Surfaces: Subsequent Conformational and Biological Consequences—A Review. J. Surf. Sci Technol 2020, 36, 7-38.
24. Klevens, R. M., Edwards, J. R., Richards Jr, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. Estimating health care-associated infections and deaths in US hospitals, 2002. Public health reports 2007, 122(2), 160-166.
25. Nicolle, L. E. Catheter associated urinary tract infections. Antimicrobial resistance and infection control 2014, 3, 1-8.
26. Yao, Q., Wu, C., Yu, X., Chen, X., Pan, G., & Chen, B. Current material engineering strategies to prevent catheter encrustation in urinary tracts. Materials Today Bio 2022, 16, 100413-100428.
27. Tenke, P., Mezei, T., Bőde, I., & Köves, B. Catheter-associated urinary tract infections. European urology supplements 2017, 16(4), 138-143.
28. Harris, J. M. E. Poly (ethylene glycol) chemistry: biotechnical and biomedical applications; 1992.
29. Cheng, G., Zhang, Z., Chen, S., Bryers, J. D., & Jiang, S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28(29), 4192-4199.
30. Sharma, S., Johnson, R. W., & Desai, T. A. Evaluation of the stability of nonfouling ultrathin poly (ethylene glycol) films for silicon-based microdevices. Langmuir 2004, 20(2), 348-356.
31. Jiang, S., & Cao, Z. Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced materials 2010, 22(9), 920-932.
32. Lowe, S., O′Brien-Simpson, N. M., & Connal, L. A. Antibiofouling polymer interfaces: poly (ethylene glycol) and other promising candidates. Polymer Chemistry 2015, 6(2), 198-212.
33. Liu, X., Xu, Y., Wu, Z., & Chen, H. Poly (N‐vinylpyrrolidone)‐modified surfaces for biomedical applications. Macromolecular bioscience 2013, 13(2), 147-154.
34. Hassouna, F., Therias, S., Mailhot, G., & Gardette, J. L. Photooxidation of poly (N-vinylpyrrolidone)(PVP) in the solid state and in aqueous solution. Polymer Degradation and Stability, 2009, 94(12), 2257-2266.
35. Franco, P.; De Marco, I. The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12 (5), 1114-1143.
36. Yuan, L., Yu, Q., Li, D., & Chen, H. Surface modification to control protein/surface interactions. Macromolecular bioscience 2011, 11(8), 1031-1040.
37. Serrano, Â., Sterner, O., Mieszkin, S., Zürcher, S., Tosatti, S., Callow, M. E., ... & Spencer, N. D. Nonfouling response of hydrophilic uncharged polymers. Advanced Functional Materials 2013, 23(46), 5706-5718.
38. Kurakula, M., & Rao, G. K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of drug delivery science and technology 2020, 60, 102046-102070.
39. Laschewsky, A.; Rosenhahn, A. Molecular design of zwitterionic polymer interfaces: searching for the difference. Langmuir 2018, 35 (5), 1056-1071.
40. Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51 (23), 5283-5293.
41. Ishihara, K. Revolutionary advances in 2‐methacryloyloxyethyl phosphorylcholine polymers as biomaterials. Journal of Biomedical Materials Research Part A 2019, 107 (5), 933-943.
42. Minko, S. Grafting on solid surfaces:“grafting to” and “grafting from” methods. Polymer surfaces and interfaces: characterization, modification and applications 2008, 215-234.
43. Tan, S. H., Nguyen, N. T., Chua, Y. C., & Kang, T. G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 2010, 4(3), 032204-032213.
44. Berdichevsky, Y., Khandurina, J., Guttman, A., & Lo, Y. H. UV/ozone modification of poly (dimethylsiloxane) microfluidic channels. Sensors and Actuators B: Chemical 2004, 97(2-3), 402-408.
45. Yang, L., Li, L., Tu, Q., Ren, L., Zhang, Y., Wang, X., ... & Wang, J. Photocatalyzed surface modification of poly (dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Analytical chemistry 2010, 82(15), 6430-6439.
46. Silverio, V., Canane, P. A., & Cardoso, S. Surface wettability and stability of chemically modified silicon, glass and polymeric surfaces via room temperature chemical vapor deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 570, 210-217.
47. Cortese, G., Martina, F., Vasapollo, G., Cingolani, R., Gigli, G., & Ciccarella, G. Modification of micro-channel filling flow by poly (dimethylsiloxane) surface functionalization with fluorine-Substituted aminonaphthols. Journal of Fluorine Chemistry 2010, 131(3), 357-363.
48. Ma, H., Davis, R. H., & Bowman, C. N. A novel sequential photoinduced living graft polymerization. Macromolecules 2000, 33(2), 331-335.
49. Lauer, A., Fast, D. E., Kelterer, A. M., Frick, E., Neshchadin, D., Voll, D., ... & Barner-Kowollik, C. Systematic assessment of the photochemical stability of photoinitiator-derived macromolecular chain termini. Macromolecules 2015, 48(23), 8451-8460.
50. Ding, G., Jing, C., Qin, X., Gong, Y., Zhang, X., Zhang, S., ... & Gao, F. Conjugated dyes carrying N, N-dialkylamino and ketone groups: One-component visible light Norrish type II photoinitiators. Dyes and Pigments 2017, 137, 456-467.
51. Scaiano, J. C., Stamplecoskie, K. G., & Hallett-Tapley, G. L. Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical communications 2012, 48(40), 4798-4808.
52. Prucker, O., Brandstetter, T., & Rühe, J. Surface-attached hydrogel coatings via C, H-insertion crosslinking for biomedical and bioanalytical applications. Biointerphases 2018, 13(1) (1), 010801-010810.
53. Liu, Q., & Locklin, J. L. Photocross-linking kinetics study of benzophenone containing zwitterionic copolymers. ACS omega 2020, 5(16), 9204-9211.
54. Yang, P., & Yang, W. . Surface chemoselective phototransformation of C–H bonds on organic polymeric materials and related high-tech applications. Chemical Reviews 2013, 113(7), 5547-5594.
55. Tsuji, K., Maeda, T., & Hotta, A. Polymer Surface Modifications by Coating. Printing on Polymers: Fundamentals and Applications 2015, 143-160.
56. Lin, X.; Fukazawa, K.; Ishihara, K. Photoreactive polymers bearing a zwitterionic phosphorylcholine group for surface modification of biomaterials. ACS applied materials & interfaces 2015, 7 (31), 17489-17498.
57. Brostow, W., Deborde, J. L., Jaclewicz, M., & Olszynski, P. Tribology with emphasis on polymers: friction, scratch resistance and wear. Journal of Materials Education 2003, 24(4/6), 119-132.
58. Mirzakhanian, Z., Faghihi, K., Barati, A., & Momeni, H. R. Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent. Journal of Biomaterials Science, Polymer Edition 2015, 26(18), 1439-1451.
59. International Organization for Standardization (ISO-10993-5:2009).
60. Rebl, H., Renner, J., Kram, W., Springer, A., Fritsch, N., Hansmann, H., ... & Nebe, J. B. Prevention of encrustation on ureteral stents: which surface parameters provide guidance for the development of novel stent materials? Polymers 2020, 12(3), 558-564.
61. Aylvin Jorge Angelo Athanasius Dias, E. H., Johannes Wilhelmus Belt, Marnix Rooijmans,Nicolaes Hubertus Maria De Bont,Edwin Peter Kennedy Currie. Coating composition for aurinary catheter. 2013.
62. Glocker, D., & Ranade, S. (Eds.). Medical Coatings and Deposition Technologies; 2016.
63. Yeh, S. B., Chen, C. S., Chen, W. Y., & Huang, C. J. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 2014, 30(38), 11386-11393.
64. Crémet, L., Corvec, S., Bémer, P., Bret, L., Lebrun, C., Lesimple, B., ... & Caroff, N. Orthopaedic-implant infections by Escherichia coli: molecular and phenotypic analysis of the causative strains. Journal of Infection 2012, 64(2), 169-175.
65. Oliveira, W. F., Silva, P. M. S., Silva, R. C. S., Silva, G. M. M., Machado, G., Coelho, L. C. B. B., & Correia, M. T. S. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. Journal of hospital infection 2018, 98(2), 111-117.
66. Li, M., Neoh, K. G., Xu, L. Q., Wang, R., Kang, E. T., Lau, T., ... & Chiong, E. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir 2012, 28(47), 16408-16422.
67. Chen, H., Yuan, L., Song, W., Wu, Z., & Li, D. Biocompatible polymer materials: role of protein–surface interactions. Progress in Polymer Science 2008, 33(11), 1059-1087.
68. Cheng, L., Liu, C., Wang, J., Wang, Y., Zha, W., & Li, X. Tough hydrogel coating on silicone rubber with improved antifouling and antibacterial properties. ACS Applied Polymer Materials 2022, 4(5), 3462-3472.
69. Singhal, J. P., & Ray, A. R. Synthesis of blood compatible polyamide block copolymers. Biomaterials 2002, 23(4), 1139-1145.
70. VanDelinder, V., & Groisman, A. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Analytical chemistry 2006, 78(11), 3765-3771.
71. Pinto, S., Alves, P., Santos, A. C., Matos, C. M., Oliveiros, B., Gonçalves, S., ... & Gil, M. H. Poly (dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains. Journal of Biomedical Materials Research Part A 2011, 98(4), 535-543.
72. Stroup, S. P., & Auge, B. K. Urinary infection and struvite stones. Urinary tract stone disease 2010, 18, 217-224.
73. Kleinen, L., Syring, I., & Laube, N. Reduction of biofilm formation on a‐C: H coated implants: investigation of biofilm‐surface interactions by variation of thin film properties. Plasma Processes and Polymers 2009, 6(1), 41-45.
74. Atmani, F., & Khan, S. R. Quantification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in vitro in the urine of healthy controls and stone-forming patients. Urologia internationalis 2002, 68(1), 54-59.
75. Prywer, J., Sadowski, R. R., & Torzewska, A. Aggregation of struvite, carbonate apatite, and Proteus mirabilis as a key factor of infectious urinary stone formation. Crystal Growth & Design 2015, 15(3), 1446-1451. |